The process $e^{+}e^{-} to qbar{q}$ plays an important role in electroweak precision measurements. We are studying this process with ILD full simulation. The key for the reconstruction of the quark pair final states is quark charge identification (ID). We report the progress of charge ID study in detail. In particular, we investigate the performance of the charge ID for each decay mode of the heavy hadrons to know the possibilities of improvements of the charge ID.
The lepton identification is essential for the physics programs at high-energy frontier, especially for the precise measurement of the Higgs boson. For this purpose, a Toolkit for Multivariate Data Analysis (TMVA) based lepton identification (LICH) has been developed for detectors using high granularity calorimeters. Using the conceptual detector geometry for the Circular Electron-Positron Collider (CEPC) and single charged particle samples with energy larger than 2 GeV, LICH identifies electrons/muons with efficiencies higher than 99.5% and controls the mis-identification rate of hadron to muons/electrons to better than 1%/0.5%. Reducing the calorimeter granularity by 1-2 orders of magnitude, the lepton identification performance is stable for particles with E > 2 GeV. Applied to fully simulated eeH/$mumu$H events, the lepton identification performance is consistent with the single particle case: the efficiency of identifying all the high energy leptons in an event, is 95.5-98.5%.
Calorimeters with silicon detectors have many unique features and are proposed for several world-leading experiments. We discuss the tests of the first three 18x18 cm$^2$ layers segmented into 1024 pixels of the technological prototype of the silicon-tungsten electromagnetic calorimeter for a future $e^+e^-$ collider. The tests have beem performed in November 2015 at CERN SPS beam line.
Recent discoveries by Belle and BESIII of charged exotic quarkonium-like resonances provide fresh impetus for study of heavy exotic hadrons. In the limit N_c --> infinity, M_Q --> infinity, the (Qbar Q qbar q) tetraquarks (TQ-s) are expected to be narrow and slightly below or above the (Qbar q) and (Q qbar) two-meson threshold. The isoscalar TQ-s manifest themselves by decay to (Qbar Q) pi pi, and the ~30 MeV heavier charged isotriplet TQ-s by decays into (Qbar Q) pi. The new data strongly suggest that the real world with N_c=3, Q=c,b and q,q = u,d is qualitatively described by the above limit. We discuss the relevant theoretical estimates and suggest new signatures for TQ-s in light of the recent discoveries. We also consider baryon-like states (Q Q qbar qbar), which if found will be direct evidence not just for near-threshold binding of two heavy mesons, but for genuine tetraquarks with novel color networks. We stress the importance of experimental search for doubly-heavy baryons in this context.
We measured the ratios of electroproduction cross-sections from a proton target for three exclusive meson-baryon final states: $Lambda K^+$, $ppi^0$, and $npi^+$, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization we extract q-qbar creation probabilities for the first time in exclusive two-body production, in which only a single q-qbar pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to non-strange pairs, similar to that seen in high-energy production.
The DEPFET collaboration develops highly granular, ultra-transparent active pixel detectors for high-performance vertex reconstruction at future collider experiments. The characterization of detector prototypes has proven that the key principle, the integration of a first amplification stage in a detector-grade sensor material, can provide a comfortable signal to noise ratio of over 40 for a sensor thickness of 50-75 $mathrm{mathbf{mu m}}$. ASICs have been designed and produced to operate a DEPFET pixel detector with the required read-out speed. A complete detector concept is being developed, including solutions for mechanical support, cooling and services. In this paper the status of DEPFET R & D project is reviewed in the light of the requirements of the vertex detector at a future linear $mathbf{e^+ e^-}$ collider.