Do you want to publish a course? Click here

On Scalaron Decay via the Trace of Energy-Momentum Tensor

56   0   0.0 ( 0 )
 Added by Ayuki Kamada
 Publication date 2019
  fields Physics
and research's language is English
 Authors Ayuki Kamada




Ask ChatGPT about the research

In some inflation scenarios such as $R^{2}$ inflation, a gravitational scalar degrees of freedom called scalaron is identified as inflaton. Scalaron linearly couples to matter via the trace of energy-momentum tensor. We study scenarios with a sequestered matter sector, where the trace of energy-momentum tensor predominantly determines the scalaron coupling to matter. In a sequestered setup, heavy degrees of freedom are expected to decouple from low-energy dynamics. On the other hand, it is non-trivial to see the decoupling since scalaron couples to a mass term of heavy degrees of freedom. Actually, when heavy degrees of freedom carry some gauge charge, the amplitude of scalaron decay to two gauge bosons does not vanish in the heavy mass limit. Here the quantum contribution to the trace of energy-momentum tensor plays an essential role. This quantum contribution is known as trace anomaly or Weyl anomaly. The trace anomaly contribution from heavy degrees of freedom cancels with the contribution from the ${it classical}$ scalaron coupling to a mass term of heavy degrees of freedom. We see how trace anomaly appears both in the Fujikawa method and in dimensional renormalization. In dimensional renormalization, one can evaluate the scalaron decay amplitude in principle at all orders, while it is unclear how to process it beyond the one-loop level in the Fujikawa method. We consider scalaron decay to two gauge bosons via the trace of energy-momentum tensor in quantum electrodynamics with scalars and fermions. We evaluate the decay amplitude at the leading order to demonstrate the decoupling of heavy degrees of freedom.



rate research

Read More

249 - Cedric Lorce , Peter Lowdon 2020
In this work we investigate the matrix elements of the energy-momentum tensor for massless on-shell states in four-dimensional unitary, local, and Poincare covariant quantum field theories. We demonstrate that these matrix elements can be parametrised in terms of covariant multipoles of the Lorentz generators, and that this gives rise to a form factor decomposition in which the helicity dependence of the states is factorised. Using this decomposition we go on to explore some of the consequences for conformal field theories, deriving the explicit analytic conditions imposed by conformal symmetry, and using examples to illustrate that they uniquely fix the form of the matrix elements. We also provide new insights into the constraints imposed by the existence of massless particles, showing in particular that massless free theories are necessarily conformal.
82 - P.H.R.S. Moraes 2019
The $f(R,T)$ gravity field equations depend generically on both the Ricci scalar $R$ and trace of the energy-momentum tensor $T$. Within the assumption of perfect fluids, the theory carries an arbitrariness regarding the choice of the matter lagrangian density $mathcal{L}$, not uniquely defined. Such an arbitrariness can be evaded by working with the trace of the theory field equations. From such an equation, one can obtain a form for $mathcal{L}$, which does not carry the arbitrariness. The obtained form for $mathcal{L}$ shows that the $f(R,T)$ gravity is unimodular. A new version of the theory is, therefore, presented and forthcoming applications are expected.
We present the calculation of the non-perturbative renormalization constants of the energy-momentum tensor in the SU(3) Yang-Mills theory. That computation is carried out in the framework of shifted boundary conditions, where a thermal quantum field theory is formulated in a moving reference frame. The non-perturbative renormalization factors are then used to measure the Equation of State of the SU(3) Yang-Mills theory. Preliminary numerical results are presented and discussed.
The probably most fundamental information about a particle is contained in the matrix elements of its energy momentum tensor (EMT) which are accessible from hard-exclusive reactions via generalized parton distribution functions. The spin decomposition of the nucleon and Ji sum rule are one example. Less prominent but equally important information is encoded in the stress tensor, related to the spatial components of the EMT, which shows in detail how the strong forces inside the nucleon balance to form a bound state. This provides not only unique insights on nucleon structure. It also leads to fascinating new applications to hadron spectroscopy which allow us to formulate new interpretations of the charmonium-nucleon pentaquarks discovered by LHCb. Recent progress is reviewed in this short overview article.
We investigate the two-dimensional energy-momentum-tensor (EMT) distributions of the nucleon on the light front, using the Abel transforms of the three-dimensional EMT ones. We explicitly show that the main features of all EMT distributions are kept intact in the course of the Abel transform. We also examine the equivalence between the global and local conditions for the nucleon stability in the three-dimensional Breit frame and in the two-dimensional transverse plane on the light front. We also discuss the two-dimensional force fields inside a nucleon on the light front.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا