Do you want to publish a course? Click here

Dust unveils the formation of a mini-Neptune planet in a protoplanetary ring

414   0   0.0 ( 0 )
 Added by Sebastian Perez Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rings and radial gaps are ubiquitous in protoplanetary disks, yet their possible connection to planet formation is currently subject to intense debates. In principle, giant planet formation leads to wide gaps which separate the gas and dust mass reservoir in the outer disk, while lower mass planets lead to shallow gaps which are manifested mainly on the dust component. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the star HD169142, host to a prominent disk with deep wide gaps that sever the disk into inner and outer regions. The new ALMA high resolution images allow for the outer ring to be resolved as three narrow rings. The HD169142 disk thus hosts both the wide gaps trait of transition disks and a narrow ring system similar to those observed in the TW Hya and HL Tau systems. The mass reservoir beyond a deep gap can thus host ring systems. The observed rings are narrow in radial extent (width/radius of 1.5/57.3, 1.8/64.2 and 3.4/76.0, in au) and have asymmetric mutual separations: the first and middle ring are separated by 7 au while the middle and outermost ring are distanced by ~12 au. Using hydrodynamical modeling we found that a simple explanation, involving a single migrating low mass planet (10 M$_oplus$), entirely accounts for such an apparently complex phenomenon. Inward migration of the planet naturally explains the rings asymmetric mutual separation. The isolation of HD169142s outer rings thus allows a proof of concept to interpret the detailed architecture of the outer region of protoplanetary disks with low mass planet formation of mini-Neptunes size, i.e. as in the protosolar nebula.



rate research

Read More

We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V=9.9) G9 dwarf star in a visual binary system observed by the TESS space mission in Sectors 5 and 6. We performed ground-based follow-up observations -- comprised of LCOGT transit photometry, NIRC2 adaptive optics imaging, and FIES, CORALIE, HARPS, HIRES, and PFS high-precision Doppler measurements -- and confirmed the planetary nature of the 16-day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of 5 days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421b, has an orbital period of Pb =5.19672 +- 0.00049 days, a mass of Mb = 7.17 +- 0.66 Mearth and a radius of Rb = 2.68+0.19-0.18 Rearth, whereas the outer warm Neptune, TOI-421 c, has a period of Pc =16.06819 +- 0.00035 days, a mass of Mc = 16.42+1.06-1.04 Mearth, a radius of Rc = 5.09+0.16-0.15 Rearth and a density of rho_c =0.685+0.080-0.072 g cm-3 . With its characteristics the inner planet (rho_b=2.05+0.52-0.41 g cm-3) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421b and TOI-421c are found to be well suitable for atmospheric characterization. Our atmospheric simulations predict significant Ly-alpha transit absorption, due to strong hydrogen escape in both planets, and the presence of detectable CH_4 in the atmosphere of TOI-421c if equilibrium chemistry is assumed.
88 - A. Riols , G. Lesur , F. Menard 2020
Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer part of the disc ($R> 1$ AU). They also potentially lead to self-organisation of the disc into large-scale axisymmetric structures, similar to the rings recently imaged by sub-millimetre or near-infrared instruments (ALMA and SPHERE). The aim of this paper is to investigate the mechanism behind the formation of these gaseous rings, but also to understand the dust dynamics and its emission in discs threaded by a large-scale magnetic field. To this end, we performed global magneto-hydrodynamics (MHD) axisymmetric simulations with ambipolar diffusion using a modified version of the PLUTO code. We explored different magnetisations with the midplane $beta$ parameter ranging from $10^5$ to $10^3$ and included dust grains -- treated in the fluid approximation -- ranging from $100 mu$m to 1 cm in size. We first show that the gaseous rings (associated with zonal flows) are tightly linked to the existence of MHD winds. Secondly, we find that millimetre-size dust is highly sedimented, with a typical scale height of 1 AU at $R=100$ AU for $beta=10^4$, compatible with recent ALMA observations. We also show that these grains concentrate into pressure maxima associated with zonal flows, leading to the formation of dusty rings. Using the radiative transfer code MCFOST, we computed the dust emission and make predictions on the ring-gap contrast and the spectral index that one might observe with interferometers like ALMA.
HD3167 is a bright (V=8.9 mag) K0V star observed by the NASAs K2 space mission during its Campaign 8. It has been recently found to host two small transiting planets, namely, HD3167b, an ultra short period (0.96 d) super-Earth, and HD3167c, a mini-Neptune on a relatively long-period orbit (29.85 d). Here we present an intensive radial velocity follow-up of HD3167 performed with the FIES@NOT, [email protected], and HARPS-N@TNG spectrographs. We revise the system parameters and determine radii, masses, and densities of the two transiting planets by combining the K2 photometry with our spectroscopic data. With a mass of 5.69+/-0.44 MEarth, radius of 1.574+/-0.054 REarth, and mean density of 8.00(+1.0)(-0.98) g/cm^3, HD3167b joins the small group of ultra-short period planets known to have a rocky terrestrial composition. HD3167c has a mass of 8.33 (+1.79)(-1.85) MEarth and a radius of 2.740(+0.106)(-0.100) REarth, yielding a mean density of 2.21(+0.56)(-0.53) g/cm^3, indicative of a planet with a composition comprising a solid core surrounded by a thick atmospheric envelope. The rather large pressure scale height (about 350 km) and the brightness of the host star make HD3167c an ideal target for atmospheric characterization via transmission spectroscopy across a broad range of wavelengths. We found evidence of additional signals in the radial velocity measurements but the currently available data set does not allow us to draw any firm conclusion on the origin of the observed variation.
327 - JT Laune , Hui Li , Shengtai Li 2019
Tidal interactions between the embedded planets and their surrounding protoplanetary disks are often postulated to produce the observed complex dust substructures, including rings, gaps, and asymmetries. In this Letter, we explore the consequences of dust coagulation on the dust dynamics and ring morphology. Coagulation of dust grains leads to dust size growth which, under typical disk conditions, produces faster radial drifts, potentially threatening the dust ring formation. Utilizing 2D hydrodynamical simulations of protoplanetary disks which include a full treatment of dust coagulation, we find that if the planet does not open a gap quickly enough, the formation of an inner ring is impeded due to dust coagulation and subsequent radial drift. Furthermore, we find that a buildup of sub-mm sized grains often appears in the dust emission at the outer edge of the dust disk.
Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We investigate mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا