Do you want to publish a course? Click here

Heat Kernel Estimates for Fractional Heat Equation

153   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the long-time behavior of the Cesaro means of fundamental solutions for fractional evolution equations corresponding to random time changes in the Brownian motion and other Markov processes. We consider both stable subordinators leading to equations with the Caputo-Djrbashian fractional derivative and more general cases corresponding to differential-convolution operators, in particular, distributed order derivatives.



rate research

Read More

166 - Hynek Kovarik 2020
We study semigroups generated by two-dimensional relativistic Hamiltonians with magnetic field. In particular, for compactly supported radial magnetic field we show how the long time behaviour of the associated heat kernel depends on the flux of the field. Similar questions are addressed for Aharonov-Bohm type magnetic field.
We give a direct proof of the sharp two-sided estimates, recently established in [4,9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1, 1}$ open sets by using Duhamel formula. We also obtain a gradient estimate for the Dirichlet heat kernel. Our assumption on the open set is slightly weaker in that we only require $D$ to be $C^{1,theta}$ for some $thetain (alpha/2, 1]$.
94 - S.A. Avdonin , S.A. Ivanov , 2016
We study inverse boundary problems for a one dimensional linear integro-differential equation of the Gurtin--Pipkin type with the Dirichlet-to-Neumann map as the inverse data. Under natural conditions on the kernel of the integral operator, we give the explicit formula for the solution of the problem with the observation on the semiaxis $t>0.$ For the observation on finite time interval, we prove the uniqueness result, which is similar to the local Borg--Marchenko theorem for the Schrodinger equation.
By using Duhamels formula, we prove sharp two-sided estimates for the heat kernel of spectral fractional Laplacian with time-dependent gradient perturbation in bounded $C^{1,1}$ domains. Moreover, we also obtain gradient estimate as well as Holder continuity of the gradient of the heat kernel.
110 - H. Falomir , P.A.G. Pisani 2005
We get a generalization of Kreins formula -which relates the resolvents of different selfadjoint extensions of a differential operator with regular coefficients- to the non-regular case $A=-partial_x^2+( u^2-1/4)/x^2+V(x)$, where $0< u<1$ and $V(x)$ is an analytic function of $xinmathbb{R}^+$ bounded from below. We show that the trace of the heat-kernel $e^{-tA}$ admits a non-standard small-t asymptotic expansion which contains, in general, integer powers of $t^ u$. In particular, these powers are present for those selfadjoint extensions of $A$ which are characterized by boundary conditions that break the local formal scale invariance at the singularity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا