We show how, upon heating the spin degrees of freedom of the Hubbard model to infinite temperature, the symmetries of the system allow the creation of steady-states with long-range correlations between $eta$-pairs. With induce this heating with either dissipation or periodic driving and evolve the system towards a nonequilibrium steady state, a process which melts all spin order in the system. The steady state is identical in both cases and displays distance-invariant off-diagonal $eta$-correlations. These correlations were first recognised in the superconducting eigenstates in Yangs seminal paper [Phys. Rev. Lett 63, 2144 (1989)], which are a subset of our steady states. We show that our results are a consequence of symmetry properties and entirely independent of the microscopic details of the model and the heating mechanism.