Diffusion through nanopores in connected lipid bilayer networks


Abstract in English

A biomimetic model of cell-cell communication was developed to probe the passive molecular transport across ion channels inserted in synthetic lipid bilayers formed between contacting droplets arranged in a linear array. Diffusion of a fluorescent probe across the array was measured for different pore concentrations. The diffusion characteristic time scale is found to vary non-linearly with the pore concentration. Our measurements are successfully modeled by a continuous time random walk description, whose waiting time is the first exit time from a droplet through a cluster of pores. The size of the cluster of pores is found to increase with their concentration. Our results provide a direct link between the mesoscopic permeation properties and the microscopic characteristics of the pores such as their number, size and spatial arrangement.

Download