Do you want to publish a course? Click here

Towards Rechargeable Zinc-Air Batteries with Aqueous Chloride Electrolytes

109   0   0.0 ( 0 )
 Added by Birger Horstmann
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents a combined theoretical and experimental investigation of aqueous near-neutral electrolytes based on chloride salts for rechargeable zinc-air batteries (ZABs). The resilience of near-neutral chloride electrolytes in air could extend ZAB lifetime, but theory-based simulations predict that such electrolytes are vulnerable to other challenges including pH instability and the unwanted precipitation of mixed zinc hydroxide chloride products. In this work, we combine theory-based simulations with experimental methods such as full cell cycling, operando pH measurements, ex-situ XRD, SEM, and EDS characterization to investigate the performance of ZABs with aqueous chloride electrolytes. The experimental characterization of near-neutral ZAB cells observes the predicted pH instability and confirms the composition of the final discharge products. Steps to promote greater pH stability and control the precipitation of discharge products are proposed.

rate research

Read More

Aqueous zinc-air batteries (ZABs) are a low-cost, safe, and sustainable technology for stationary energy storage. ZABs with pH-buffered near-neutral electrolytes have the potential for longer lifetime compared to traditional alkaline ZABs due to the slower absorption of carbonates at non-alkaline pH values. However, existing near-neutral electrolytes often contain halide salts, which are corrosive and threaten the precipitation of ZnO as the dominant discharge product. This paper presents a method for designing halide-free aqueous ZAB electrolytes using thermodynamic descriptors to computationally screen components. The dynamic performance of a ZAB with one possible halide-free aqueous electrolyte based on organic salts is simulated using an advanced method of continuum modeling, and the results are validated by experiments. XRD, SEM, and EDS measurements of Zn electrodes show that ZnO is the dominant discharge product, and operando pH measurements confirm the stability of the electrolyte pH during cell cycling. Long-term full cell cycling tests are performed, and RRDE measurements elucidate the mechanism of ORR and OER. Our analysis shows that aqueous electrolytes containing organic salts could be a promising field of research for zinc-based batteries, due to their Zn$^{2+}$ chelating and pH buffering properties. We discuss the remaining challenges including the electrochemical stability of the electrolyte components.
Zinc-air batteries offer large specific energy densities, while relying on abundant and non-toxic materials. In this paper, we present the first multi-dimensional simulations of zinc-air batteries. We refine our existing theory-based model of secondary zinc-air systems. The model comprises thermodynamically consistent multi-species transport in alkaline electrolytes, formation and dissolution of metallic zinc and passivating zinc oxide, as well as multi-phase coexistence in gas diffusion electrodes. For the first time, we simulate zinc shape-change during battery cycling by modeling convection of zinc solids. We validate our model with in-situ tomography of commercial button cells. Two-dimensional volume-averaged simulations of cell voltage and zinc electrode morphology during discharge agree with these measurements. Thus, we can study how electrolyte carbonation limits shelf-life and how zinc shape-change limits cycle-life. The charging current is found to be the major contributor to cycle-life limitations. Finally, we optimize initial anode structure and charge-discharge protocols for improved performance and cycle-ability.
The performance of gold nanoparticles (NPs) in applications depends critically on the structure of the NP-solvent interface, at which the electrostatic surface polarization is one of the key characteristics that affects hydration, ionic adsorption, and electrochemical reactions. Here, we demonstrate significant effects of explicit metal polarizability on the solvation and electrostatic properties of bare gold NPs in aqueous electrolyte solutions of sodium salts of various anions (Cl$^-$, BF$_4$$^-$, PF$_6$$^-$, Nip$^-$(nitrophenolate), and 3- and 4-valent hexacyanoferrate (HCF)), using classical molecular dynamics simulations with a polarizable core-shell model of the gold atoms. We find considerable spatial heterogeneity of the polarization and electrostatic potentials on the NP surface, mediated by a highly facet-dependent structuring of the interfacial water molecules. Moreover, ion-specific, facet-dependent ion adsorption leads to large alterations of the interfacial polarization. Compared to non-polarizable NPs, polarizability modifies water local dipole densities only slightly, but has substantial effects on the electrostatic surface potentials, and leads to significant lateral redistributions of ions on the NP surface. Besides, interfacial polarization effects on the individual monovalent ions cancel out in the far field, and effective Debye-Huckel surface potentials remain essentially unaffected, as anticipated from continuum `image-charge concepts. Hence, the explicit charge response of metal NPs is crucial for the accurate description and interpretation of interfacial electrostatics (as, e.g., for charge transfer and interface polarization in catalysis and electrochemistry).
Photoelectron spectroscopy experiments in ionic solutions reveal important electronic structure information, in which the interaction between hydrated ions and water solvent can be inferred. Based on many-body perturbation theory with GW approximation, we theoretically compute the quasiparticle electronic structure of chloride anion solution, which is modeled by path-integral $ab$ $initio$ molecular dynamics simulation by taking account the nuclear quantum effects (NQEs). The electronic levels of hydrated anion as well as water are determined and compared to the recent experimental photoelectron spectra. It is found that NQEs improve the agreement between theoretical prediction and experiment because NQEs effectively weaken the hybridization of the between the $rm Cl^-$ anion and water. Our study indicates that NQEs plays a small but non-negligible role in predicting the electronic structure of the aqueous solvation of ions of the Hofmeister series.
The parasitic reactions associated with reduced oxygen species and the difficulty in achieving the high theoretical capacity have been major issues plaguing development of practical non-aqueous Li-O2 batteries. We hereby address the above issues by exploring the synergistic effect of 2,5-di-tert-butyl-1,4- benzoquinone and H2O on the oxygen chemistry in a non-aqueous Li-O2 battery. Water stabilizes the quinone monoanion and dianion, shifting the reduction potentials of the quinone and monoanion to more positive values (vs. Li+). When water and the quinone are used together in a (largely) non-aqueous Li-O2 battery, the cell discharge operates via a two-electron oxygen reduction reaction to form Li2O2, the battery discharge voltage, rate, capacity all being considerably increased and fewer side reactions being detected; Li2O2 crystals can grow up to 30 um, more than an order of magnitude larger than cases with the quinone alone or without any additives, suggesting that water is essential to promoting a solution dominated process with the quinone on discharging. The catalytic reduction of O2 by the quinone monoanion is predominantly responsible for the attractive features mentioned above. Water stabilizes the quinone monoanion via hydrogen bond formation and by coordination of the Li+ ions, and it also helps increase the solvation, concentration, life time and diffusion length of reduced oxygen species that dictate the discharge voltage, rate and capacity of the battery. When a redox mediator is also used to aid the charging process, a high-power, high energy- density, rechargeable Li-O2 battery is obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا