Do you want to publish a course? Click here

Entanglement entropy for the valence bond solid phases of two-dimensional dimerized Heisenberg antiferromagnets

228   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We calculate the bipartite von Neumann and second Renyi entanglement entropies of the ground states of spin-1/2 dimerized Heisenberg antiferromagnets on a square lattice. Two distinct dimerization patterns are considered: columnar and staggered. In both cases, we concentrate on the valence bond solid (VBS) phase and describe such a phase with the bond-operator representation. Within this formalism, the original spin Hamiltonian is mapped into an effective interacting boson model for the triplet excitations. We study the effective Hamiltonian at the harmonic approximation and determine the spectrum of the elementary triplet excitations. We then follow an analytical procedure, which is based on a modified spin-wave theory for finite systems and was originally employed to calculate the entanglement entropies of magnetic ordered phases, and calculate the entanglement entropies of the VBS ground states. In particular, we consider one-dimensional (line) subsystems within the square lattice, a choice that allows us to consider line subsystems with sizes up to $L = 1000$. We combine such a procedure with the results of the bond-operator formalism at the harmonic level and show that, for both dimerized Heisenberg models, the entanglement entropies of the corresponding VBS ground states obey an area law as expected for gapped phases. For both columnar-dimer and staggered-dimer models, we also show that the entanglement entropies increase but do not diverge as the dimerization decreases and the system approaches the Neel--VBS quantum phase transition. Finally, the entanglement spectra associated with the VBS ground states are presented.



rate research

Read More

Every singlet state of a quantum spin 1/2 system can be decomposed into a linear combination of valence bond basis states. The range of valence bonds within this linear combination as well as the correlations between them can reveal the nature of the singlet state, and are key ingredients in variational calculations. In this work, we study the bipartite valence bond distributions and their correlations within the ground state of the Heisenberg antiferromagnet on bipartite lattices. In terms of field theory, this problem can be mapped to correlation functions near a boundary. In dimension d >= 2, a non-linear sigma model analysis reveals that at long distances the probability distribution P(r) of valence bond lengths decays as |r|^(-d-1) and that valence bonds are uncorrelated. By a bosonization analysis, we also obtain P(r) proportional to |r|^(-d-1) in d=1 despite the different mechanism. On the other hand, we find that correlations between valence bonds are important even at large distances in d=1, in stark contrast to d >= 2. The analytical results are confirmed by high-precision quantum Monte Carlo simulations in d=1, 2, and 3. We develop a single-projection loop variant of the valence bond projection algorithm, which is well-designed to compute valence bond probabilities and for which we provide algorithmic details.
We introduce for SU(2) quantum spin systems the Valence Bond Entanglement Entropy as a counting of valence bond spin singlets shared by two subsystems. For a large class of antiferromagnetic systems, it can be calculated in all dimensions with Quantum Monte Carlo simulations in the valence bond basis. We show numerically that this quantity displays all features of the von Neumann entanglement entropy for several one-dimensional systems. For two-dimensional Heisenberg models, we find a strict area law for a Valence Bond Solid state and multiplicative logarithmic corrections for the Neel phase.
91 - R. L. Doretto 2020
We study a system of interacting triplons (the elementary excitations of a valence-bond solid) described by an effective interacting boson model derived within the bond-operator formalism. In particular, we consider the square lattice spin-1/2 $J_1$-$J_2$ antiferromagnetic Heisenberg model, focus on the intermediate parameter region, where a quantum paramagnetic phase sets in, and consider the columnar valence-bond solid phase. Within the bond-operator theory, the Heisenberg model is mapped into an effective boson model in terms of triplet operators $t$. The effective boson model is studied at the harmonic approximation and the energy of the triplons and the expansion of the triplon operators $b$ in terms of the triplet operators $t$ are determined. Such an expansion allows us to performed a second mapping, and therefore, determine an effective interacting boson model in terms of the triplon operators $b$. We then consider systems with a fixed number of triplons and determined the ground-state energy and the spectrum of elementary excitations within a mean-field approximation. We show that many-triplon states are stable, the lowest-energy ones are constituted by a small number of triplons, and the excitation gaps are finite. For $J_2=0.48 J_1$ and $J_2=0.52 J_1$, we also calculate spin-spin and dimer-dimer correlation functions, dimer order parameters, and the bipartite von Neumann entanglement entropy within our mean-field formalism in order to determine the properties of the many-triplon state as a function of the triplon number. We find that the spin and the dimer correlations decay exponentially and that the entanglement entropy obeys an area law, regardless the triplon number. Moreover, only for $J_2=0.48 J_1$, the spin correlations indicate that the many-triplon states with large triplon number might display a more homogeneous singlet pattern than the columnar valence-bond solid.
81 - D. X. Yao , A. W. Sandvik 2006
We use a quantum Monte Carlo method to calculate the Neel temperature T_N of weakly coupled S=1/2 Heisenberg antiferromagnetic layers consisting of coupled ladders. This system can be tuned to different two-dimensional scaling regimes for T > T_N. In a single-layer mean-field theory, chi_s^{2D}(T_N)=(z_2J)^{-1}, where chi_s^{2D} is the exact staggered susceptibility of an isolated layer, J the inter-layer coupling, and z_2=2 the layer coordination number. With a renormalized z_2, we find that this relationship applies not only in the renormalized-classical regime, as shown previously, but also in the quantum-critical regime and part of the quantum-disordered regime. The renormalization is nearly constant; k_2 ~ 0.65-0.70. We also study other universal scaling functions.
We present a large-N variational approach to describe the magnetism of insulating doped semiconductors based on a disorder-generalization of the resonating-valence-bond theory for quantum antiferromagnets. This method captures all the qualitative and even quantitative predictions of the strong-disorder renormalization group approach over the entire experimentally relevant temperature range. Finally, by mapping the problem on a hard-sphere fluid, we could provide an essentially exact analytic solution without any adjustable parameters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا