Do you want to publish a course? Click here

IEEE 802.11be Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax

86   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Wi-Fi technology is continuously innovating to cater to the growing customer demands, driven by the digitalisation of everything, both in the home as well as the enterprise and hotspot spaces. In this article, we introduce to the wireless community the next generation Wi-Fi$-$based on IEEE 802.11be Extremely High Throughput (EHT)$-$, present the main objectives and timelines of this new 802.11be amendment, thoroughly describe its main candidate features and enhancements, and cover the important issue of coexistence with other wireless technologies. We also provide simulation results to assess the potential throughput gains brought by 802.11be with respect to 802.11ax.



rate research

Read More

With the emergence of 4k/8k video, the throughput requirement of video delivery will keep grow to tens of Gbps. Other new high-throughput and low-latency video applications including augmented reality (AR), virtual reality (VR), and online gaming, are also proliferating. Due to the related stringent requirements, supporting these applications over wireless local area network (WLAN) is far beyond the capabilities of the new WLAN standard -- IEEE 802.11ax. To meet these emerging demands, the IEEE 802.11 will release a new amendment standard IEEE 802.11be -- Extremely High Throughput (EHT), also known as Wireless-Fidelity (Wi-Fi) 7. This article provides the comprehensive survey on the key medium access control (MAC) layer techniques and physical layer (PHY) techniques being discussed in the EHT task group, including the channelization and tone plan, multiple resource units (multi-RU) support, 4096 quadrature amplitude modulation (4096-QAM), preamble designs, multiple link operations (e.g., multi-link aggregation and channel access), multiple input multiple output (MIMO) enhancement, multiple access point (multi-AP) coordination (e.g., multi-AP joint transmission), enhanced link adaptation and retransmission protocols (e.g., hybrid automatic repeat request (HARQ)). This survey covers both the critical technologies being discussed in EHT standard and the related latest progresses from worldwide research. Besides, the potential developments beyond EHT are discussed to provide some possible future research directions for WLAN.
Wi-Fi is among the most successful wireless technologies ever invented. As Wi-Fi becomes more and more present in public and private spaces, it becomes natural to leverage its ubiquitousness to implement groundbreaking wireless sensing applications such as human presence detection, activity recognition, and object tracking, just to name a few. This paper reports ongoing efforts by the IEEE 802.11bf Task Group (TGbf), which is defining the appropriate modifications to existing Wi-Fi standards to enhance sensing capabilities through 802.11-compliant waveforms. We summarize objectives and timeline of TGbf, and discuss some of the most interesting proposed technical features discussed so far. We also introduce a roadmap of research challenges pertaining to Wi-Fi sensing and its integration with future Wi-Fi technologies and emerging spectrum bands, hoping to elicit further activities by both the research community and TGbf.
76 - Qiao Qu , Bo Li , Mao Yang 2018
With the ever-increasing demand for wireless traffic and quality of serives (QoS), wireless local area networks (WLANs) have developed into one of the most dominant wireless networks that fully influence human life. As the most widely used WLANs standard, Institute of Electrical and Electronics Engineers (IEEE) 802.11 will release the upcoming next generation WLANs standard amendment: IEEE 802.11ax. This article comprehensively surveys and analyzes the application scenarios, technical requirements, standardization process, key technologies, and performance evaluations of IEEE 802.11ax. Starting from the technical objectives and requirements of IEEE 802.11ax, this article pays special attention to high-dense deployment scenarios. After that, the key technologies of IEEE 802.11ax, including the physical layer (PHY) enhancements, multi-user (MU) medium access control (MU-MAC), spatial reuse (SR), and power efficiency are discussed in detail, covering both standardization technologies as well as the latest academic studies. Furthermore, performance requirements of IEEE 802.11ax are evaluated via a newly proposed systems and link-level integrated simulation platform (SLISP). Simulations results confirm that IEEE 802.11ax significantly improves the user experience in high-density deployment, while successfully achieves the average per user throughput requirement in project authorization request (PAR) by four times compared to the legacy IEEE 802.11. Finally, potential advancement beyond IEEE 802.11ax are discussed to complete this holistic study on the latest IEEE 802.11ax. To the best of our knowledge, this article is the first study to directly investigate and analyze the latest stable version of IEEE 802.11ax, and the first work to thoroughly and deeply evaluate the compliance of the performance requirements of IEEE 802.11ax.
This paper explores the feasibility of leveraging concepts from deep reinforcement learning (DRL) to enable dynamic resource management in Wi-Fi networks implementing distributed multi-user MIMO (D-MIMO). D-MIMO is a technique by which a set of wireless access points are synchronized and grouped together to jointly serve multiple users simultaneously. This paper addresses two dynamic resource management problems pertaining to D-MIMO Wi-Fi networks: (i) channel assignment of D-MIMO groups, and (ii) deciding how to cluster access points to form D-MIMO groups, in order to maximize user throughput performance. These problems are known to be NP-Hard and only heuristic solutions exist in literature. We construct a DRL framework through which a learning agent interacts with a D-MIMO Wi-Fi network, learns about the network environment, and is successful in converging to policies which address the aforementioned problems. Through extensive simulations and on-line training based on D-MIMO Wi-Fi networks, this paper demonstrates the efficacy of DRL in achieving an improvement of 20% in user throughput performance compared to heuristic solutions, particularly when network conditions are dynamic. This work also showcases the effectiveness of DRL in meeting multiple network objectives simultaneously, for instance, maximizing throughput of users as well as fairness of throughput among them.
Driven by growing spectrum shortage, Long-term Evolution in unlicensed spectrum (LTE-U) has recently been proposed as a new paradigm to deliver better performance and experience for mobile users by extending the LTE protocol to unlicensed spectrum. In the paper, we first present a comprehensive overview of the LTE-U technology, and discuss the practical challenges it faces. We summarize the existing LTE-U operation modes and analyze several means for LTE-U coexistence with Wi-Fi medium access control protocols. We further propose a novel hyper access-point (HAP) that integrates the functionalities of LTE small cell base station and commercial Wi-Fi AP for deployment by cellular network operators. Our proposed LTE-U access embedding within the Wi-Fi protocol is non-disruptive to unlicensed Wi-Fi nodes and demonstrates performance benefits as a seamless and novel LTE and Wi-Fi coexistence technology in unlicensed band. We provide results to demonstrate the performances advantage of this novel LTE-U proposal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا