Do you want to publish a course? Click here

Enhancement Mask for Hippocampus Detection and Segmentation

303   0   0.0 ( 0 )
 Added by Wenxi Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Detection and segmentation of the hippocampal structures in volumetric brain images is a challenging problem in the area of medical imaging. In this paper, we propose a two-stage 3D fully convolutional neural network that efficiently detects and segments the hippocampal structures. In particular, our approach first localizes the hippocampus from the whole volumetric image while obtaining a proposal for a rough segmentation. After localization, we apply the proposal as an enhancement mask to extract the fine structure of the hippocampus. The proposed method has been evaluated on a public dataset and compares with state-of-the-art approaches. Results indicate the effectiveness of the proposed method, which yields mean Dice Similarity Coefficients (i.e. DSC) of $0.897$ and $0.900$ for the left and right hippocampus, respectively. Furthermore, extensive experiments manifest that the proposed enhancement mask layer has remarkable benefits for accelerating training process and obtaining more accurate segmentation results.



rate research

Read More

Binary grid mask representation is broadly used in instance segmentation. A representative instantiation is Mask R-CNN which predicts masks on a $28times 28$ binary grid. Generally, a low-resolution grid is not sufficient to capture the details, while a high-resolution grid dramatically increases the training complexity. In this paper, we propose a new mask representation by applying the discrete cosine transform(DCT) to encode the high-resolution binary grid mask into a compact vector. Our method, termed DCT-Mask, could be easily integrated into most pixel-based instance segmentation methods. Without any bells and whistles, DCT-Mask yields significant gains on different frameworks, backbones, datasets, and training schedules. It does not require any pre-processing or pre-training, and almost no harm to the running speed. Especially, for higher-quality annotations and more complex backbones, our method has a greater improvement. Moreover, we analyze the performance of our method from the perspective of the quality of mask representation. The main reason why DCT-Mask works well is that it obtains a high-quality mask representation with low complexity. Code is available at https://github.com/aliyun/DCT-Mask.git.
106 - Shichao Xu , Shuyue Lan , Qi Zhu 2019
Instance segmentation is a promising yet challenging topic in computer vision. Recent approaches such as Mask R-CNN typically divide this problem into two parts -- a detection component and a mask generation branch, and mostly focus on the improvement of the detection part. In this paper, we present an approach that extends Mask R-CNN with five novel optimization techniques for improving the mask generation branch and reducing the conflicts between the mask branch and the detection component in training. These five techniques are independent to each other and can be flexibly utilized in building various instance segmentation architectures for increasing the overall accuracy. We demonstrate the effectiveness of our approach with tests on the COCO dataset.
The reliability of grasp detection for target objects in complex scenes is a challenging task and a critical problem that needs to be solved urgently in practical application. At present, the grasp detection location comes from searching the feature space of the whole image. However, the cluttered background information in the image impairs the accuracy of grasping detection. In this paper, a robotic grasp detection algorithm named MASK-GD is proposed, which provides a feasible solution to this problem. MASK is a segmented image that only contains the pixels of the target object. MASK-GD for grasp detection only uses MASK features rather than the features of the entire image in the scene. It has two stages: the first stage is to provide the MASK of the target object as the input image, and the second stage is a grasp detector based on the MASK feature. Experimental results demonstrate that MASK-GDs performance is comparable with state-of-the-art grasp detection algorithms on Cornell Datasets and Jacquard Dataset. In the meantime, MASK-GD performs much better in complex scenes.
Although having achieved great success in medical image segmentation, deep convolutional neural networks usually require a large dataset with manual annotations for training and are difficult to generalize to unseen classes. Few-shot learning has the potential to address these challenges by learning new classes from only a few labeled examples. In this work, we propose a new framework for few-shot medical image segmentation based on prototypical networks. Our innovation lies in the design of two key modules: 1) a context relation encoder (CRE) that uses correlation to capture local relation features between foreground and background regions; and 2) a recurrent mask refinement module that repeatedly uses the CRE and a prototypical network to recapture the change of context relationship and refine the segmentation mask iteratively. Experiments on two abdomen CT datasets and an abdomen MRI dataset show the proposed method obtains substantial improvement over the state-of-the-art methods by an average of 16.32%, 8.45% and 6.24% in terms of DSC, respectively. Code is publicly available.
128 - Xiaohui Zeng , Renjie Liao , Li Gu 2019
In this paper, we propose the differentiable mask-matching network (DMM-Net) for solving the video object segmentation problem where the initial object masks are provided. Relying on the Mask R-CNN backbone, we extract mask proposals per frame and formulate the matching between object templates and proposals at one time step as a linear assignment problem where the cost matrix is predicted by a CNN. We propose a differentiable matching layer by unrolling a projected gradient descent algorithm in which the projection exploits the Dykstras algorithm. We prove that under mild conditions, the matching is guaranteed to converge to the optimum. In practice, it performs similarly to the Hungarian algorithm during inference. Meanwhile, we can back-propagate through it to learn the cost matrix. After matching, a refinement head is leveraged to improve the quality of the matched mask. Our DMM-Net achieves competitive results on the largest video object segmentation dataset YouTube-VOS. On DAVIS 2017, DMM-Net achieves the best performance without online learning on the first frames. Without any fine-tuning, DMM-Net performs comparably to state-of-the-art methods on SegTrack v2 dataset. At last, our matching layer is very simple to implement; we attach the PyTorch code ($<50$ lines) in the supplementary material. Our code is released at https://github.com/ZENGXH/DMM_Net.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا