Do you want to publish a course? Click here

Asymptotic resolution bounds of generalized modularity and multi-scale community detection

83   0   0.0 ( 0 )
 Added by Boleslaw Szymanski
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The maximization of generalized modularity performs well on networks in which the members of all communities are statistically indistinguishable from each other. However, there is no theory bounding the maximization performance in more realistic networks where edges are heterogeneously distributed within and between communities. Using the random graph properties, we establish asymptotic theoretical bounds on the resolution parameter for which the generalized modularity maximization performs well. From this new perspective on random graph model, we find the resolution limit of modularity maximization can be explained in a surprisingly simple and straightforward way. Given a network produced by the stochastic block models, the communities for which the resolution parameter is larger than their densities are likely to be spread among multiple clusters, while communities for which the resolution parameter is smaller than their background inter-community edge density will be merged into one large component. Therefore, no suitable resolution parameter exits when the intra-community edge density in a subgraph is lower than the inter-community edge density in some other subgraph. For such networks, we propose a progressive agglomerative heuristic algorithm to detect practically significant communities at multiple scales.



rate research

Read More

108 - Jingfei Zhang , Yuguo Chen 2018
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one type of nodes, very few community detection techniques have been developed for heterogeneous networks. In this paper, we propose a modularity based community detection framework for heterogeneous networks. Unlike existing methods, the proposed approach has the flexibility to treat the number of communities as an unknown quantity. We describe a Louvain type maximization method for finding the community structure that maximizes the modularity function. Our simulation results show the advantages of the proposed method over existing methods. Moreover, the proposed modularity function is shown to be consistent under a heterogeneous stochastic blockmodel framework. Analyses of the DBLP four-area dataset and a MovieLens dataset demonstrate the usefulness of the proposed method.
Community detection is a significant and challenging task in network research. Nowadays, plenty of attention has been focused on local methods of community detection. Among them, community detection with a greedy algorithm typically starts from the identification of local essential nodes called central nodes of the network; communities expand later from these central nodes by optimizing a modularity function. In this paper, we propose a new central node indicator and a new modularity function. Our central node indicator, which we call local centrality indicator (LCI), is as efficient as the well-known global maximal degree indicator and local maximal degree indicator; on certain special network structure, LCI performs even better. On the other hand, our modularity function F2 overcomes certain disadvantages,such as the resolution limit problem,of the modularity functions raised in previous literature. Combined with a greedy algorithm, LCI and F2 enable us to identify the right community structures for both the real world networks and the simulated benchmark network. Evaluation based on the normalized mutual information (NMI) suggests that our community detection method with a greedy algorithm based on LCI and F2 performs superior to many other methods. Therefore, the method we proposed in this paper is potentially noteworthy.
Because networks can be used to represent many complex systems, they have attracted considerable attention in physics, computer science, sociology, and many other disciplines. One of the most important areas of network science is the algorithmic detection of cohesive groups (i.e., communities) of nodes. In this paper, we algorithmically detect communities in social networks and image data by optimizing multislice modularity. A key advantage of modularity optimization is that it does not require prior knowledge of the number or sizes of communities, and it is capable of finding network partitions that are composed of communities of different sizes. By optimizing multislice modularity and subsequently calculating diagnostics on the resulting network partitions, it is thereby possible to obtain information about network structure across multiple system scales. We illustrate this method on data from both social networks and images, and we find that optimization of multislice modularity performs well on these two tasks without the need for extensive problem-specific adaptation. However, improving the computational speed of this method remains a challenging open problem.
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.
Community structures are critical towards understanding not only the network topology but also how the network functions. However, how to evaluate the quality of detected community structures is still challenging and remains unsolved. The most widely used metric, normalized mutual information (NMI), was proved to have finite size effect, and its improved form relative normalized mutual information (rNMI) has reverse finite size effect. Corrected normalized mutual information (cNMI) was thus proposed and has neither finite size effect nor reverse finite size effect. However, in this paper we show that cNMI violates the so-called proportionality assumption. In addition, NMI-type metrics have the problem of ignoring importance of small communities. Finally, they cannot be used to evaluate a single community of interest. In this paper, we map the computed community labels to the ground-truth ones through integer linear programming, then use kappa index and F-score to evaluate the detected community structures. Experimental results demonstrate the advantages of our method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا