A strictly ergodic, positive entropy subshift uniformly uncorrelated to the Moebius function


Abstract in English

A recent result of Downarowicz and Serafin (DS) shows that there exist positive entropy subshifts satisfying the assertion of Sarnaks conjecture. More precisely, it is proved that if $y=(y_n)_{nge 1}$ is a bounded sequence with zero average along every infinite arithmetic progression (the Mobius function is an example of such a sq $y$) then for every $Nge 2$ there exists a subshift $Sigma$ over $N$ symbols, with entropy arbitrarily close to $log N$, uncorrelated to $y$. In the present note, we improve the result of (DS). First of all, we observe that the uncorrelation obtained in (DS) is emph{uniform}, i.e., for any continuous function $f:Sigmato {mathbb R}$ and every $epsilon>0$ there exists $n_0$ such that for any $nge n_0$ and any $xinSigma$ we have $$ left|frac1nsum_{i=1}^{n}f(T^ix),y_iright|<epsilon. $$ More importantly, by a fine-tuned modification of the construction from (DS) we create a emph{strictly ergodic} subshift, with all the desired properties of the example in (DS) (uniformly uncorrelated to $y$ and with entropy arbitrarily close to $log N$). The question about these two additional properties (uniformity of uncorrelation and strict ergodicity) has been posed by Mariusz Lemanczyk in the context of the so-called strong MOMO (Mobius Orthogonality on Moving Orbits) property. Our result shows, among other things, that strong MOMO is essentially stronger than uniform uncorrelation, even for strictly ergodic systems.

Download