Scaling laws for harmonically trapped two-species mixtures at thermal equilibrium


Abstract in English

We discuss the scaling of the interaction energy with particle numbers for a harmonically trapped two-species mixture at thermal equilibrium experiencing interactions of arbitrary strength and range. In the limit of long-range interactions and weak coupling, we recover known results for the integrable Caldeira-Leggett model in the classical limit. In the case of short-range interactions and for a balanced mixture, numerical simulations show scaling laws with exponents that depend on the interaction strength, its attractive or repulsive nature, and the dimensionality of the system. Simple analytic considerations based on equilibrium statistical mechanics and small interspecies coupling quantitatively recover the numerical results. The dependence of the scaling on interaction strength helps to identify a threshold between two distinct regimes. Our thermalization model covers both local and extended interactions allowing for interpolation between different systems such as fully ionized gases and neutral atoms, as well as parameters describing integrable and chaotic dynamics.

Download