Do you want to publish a course? Click here

Near-infrared [Fe II] and H$_{2}$ Emission-line Study of Galactic Supernova Remnants in the First Quadrant

52   0   0.0 ( 0 )
 Added by Yong-Hyun Lee
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the detection of near-infrared (NIR) [Fe II] (1.644 $mu$m) and H$_{2}$ 1-0 S(1) (2.122 $mu$m) line features associated with Galactic supernova remnants (SNRs) in the first quadrant using two narrowband imaging surveys, UWIFE and UWISH2. Among the total of 79 SNRs fully covered by both surveys, we found 19 [Fe II]-emitting and 19 H$_{2}$-emitting SNRs, giving a detection rate of 24% for each. Eleven SNRs show both emission features. The detection rate of [Fe II] and H$_{2}$ peaks at the Galactic longitude ($l$) of $40^{circ}$-$50^{circ}$ and $30^{circ}$-$40^{circ}$, respectively, and gradually decreases toward smaller/larger $l$. Five out of the eleven SNRs emitting both emission lines clearly show an [Fe II]-H$_{2}$ reversal, where H$_{2}$ emission features are found outside the SNR boundary in [Fe II] emission. Our NIR spectroscopy shows that the H$_{2}$ emission originates from collisionally excited H$_{2}$ gas. The brightest SNR in both [Fe II] and H$_{2}$ emissions is W49B, contributing more than 70% and 50% of the total [Fe II] 1.644 $mu$m ($2.0 times 10^4$ L$_{odot}$) and H$_{2}$ 2.122 $mu$m ($1.2 times 10^3$ L$_{odot}$) luminosities of the detected SNRs. The total [Fe II] 1.644 $mu$m luminosity of our Galaxy is a few times smaller than that expected from the SN rate using the correlation found in nearby starburst galaxies. We discuss possible explanations for this.



rate research

Read More

We present a long-exposure (~10 hr) image of the supernova (SN) remnant Cassiopeia A (Cas A) obtained with the UKIRT 3.8-m telescope using a narrow band filter centered at 1.644 um emission. The passband contains [Fe II] 1.644 um and [Si I] 1.645 um lines, and our `deep [Fe II]+[Si I] image provides an unprecedented panoramic view of Cas A, showing both shocked and unshocked SN ejecta together with shocked circumstellar medium at subarcsec (~0.7 arcsec or 0.012 pc) resolution. The diffuse emission from the unshocked SN ejecta has a form of clumps, filaments, and arcs, and their spatial distribution correlates well with that of the Spitzer [Si II] infrared emission, suggesting that the emission is likely due to [Si I] line not [Fe II] line as in shocked material. The structure of the optically-invisible western area of Cas A is clearly seen for the first time. The area is filled with many Quasi-Stationary Flocculi (QSFs) and fragments of the disrupted ejecta shell. We suggest that the anomalous radio properties in this area could be due to the increased number of such dense clumps. We identified 309 knots in the deep [Fe II]+[Si I] image and classified them into QSFs and fast-moving knots (FMKs). The total H+He mass of QSFs is ~0.23 Msun, implying that the mass fraction of dense clumps in the progenitors red-supergiant wind is 4--13%. The spatial distribution of QSFs suggests that there had been a highly asymmetric mass loss $10^4$--$10^5$ yr before the SN explosion. The mass of the [Fe II] line-emitting, shocked dense Fe ejecta is ~3x$10^{-5}$ Msun. The comparison with the ionic S-line dominated Hubble Space Telescope WFC3/IR image suggests that the outermost FMKs in the southeastern area are Fe-rich.
We have carried out high-resolution near-infrared spectroscopic observations toward 16 Galactic supernova remnants (SNRs) showing strong H$_{2}$ emission features. A dozen bright H$_{2}$ emission lines are clearly detected for individual SNRs, and we have measured their central velocities, line widths, and fluxes. For all SNRs except one (G9.9$-$0.8), the H$_{2}$ line ratios are well consistent with that of thermal excitation at $Tsim2000$ K, indicating that the H$_{2}$ emission lines are most likely from shock-excited gas and therefore that they are physically associated with the remnants. The kinematic distances to the 15 SNRs are derived from the central velocities of the H$_{2}$ lines using a Galactic rotation model. We derive for the first time the kinematic distances to four SNRs: G13.5$+$0.2, G16.0$-$0.5, G32.1$-$0.9, and G33.2$-$0.6. Among the remaining 11 SNRs, the central velocities of the H$_{2}$ emission lines for six SNRs are well consistent ($pm5$ km s$^{-1}$) with those obtained in previous radio observations, while for the other five SNRs (G18.1$-$0.1, G18.9$-$1.1, Kes 69, 3C 396, W49B) they are significantly different. We discuss the velocity discrepancies in these five SNRs. In G9.9$-$0.8, the H$_{2}$ emission shows nonthermal line ratios and narrow line width ($sim 4$ km s$^{-1}$), and we discuss its origin.
Context. The properties of the population of Galactic supernova remnants (SNRs) are essential to our understanding of the dynamics of the interstellar medium (ISM) in the Milky Way. However, the completeness of the catalog of Galactic SNRs is expected to be only ${sim}30%$, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H II regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H II regions. Aims. We aim to identify SNR candidates using continuum images from the Karl G. Jansky Very Large Array GLObal view of the STAR formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4--8 GHz) radio wavelength survey of the Galactic plane covering $358^{circ} leq l leq 60^{circ}, |b| leq 1^{circ}$. The continuum images from this survey, which resulted from observations with the most compact configuration of the array, have an angular resolution of $18$. We searched for SNRs in these images to identify known SNRs, previously identified SNR candidates, and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 of the 94 known SNRs in the survey region. Four of these are reclassified as H II regions following detection in MIR surveys. (Abridged)
We present far-infrared (FIR) spectroscopy of supernova remnants (SNRs) based on the archival data of the Infrared Space Observatory ($ISO$) taken with the Long Wavelength Spectrometer (LWS). Our sample includes previously unpublished profiles of line and continuum spectra for 20 SNRs in the Galaxy and Magellanic Clouds. In several SNRs including G21.5-0.9, G29.7-0.3, the Crab Nebula, and G320.4-1.2, we find evidence for broad [O I], [O III], [N II], and [C II] lines with velocity dispersions up to a few 10$^3$ km s$^{-1}$, indicating that they are associated with high-velocity SN ejecta. Our detection of Doppler-broadened atomic emission lines and a bright FIR continuum hints at the presence of newly formed dust in SN ejecta. For G320.4-1.2, we present the first estimate of an ejecta-dust mass of 0.1 - 0.2 M$_odot$, which spatially coincides with the broad line emission, by applying a blackbody model fit with components of the SNR and background emission. Our sample includes raster maps of 63, 145 $mu$m [O I] and 158 $mu$m [C II] lines toward SNRs Kes 79, CTB 109, and IC 443. Based on these line intensities, we suggest interacting shock types in these SNRs. Finally, we compare our LWS spectra of our sample SNRs with the spectra of several HII regions, and discuss their FIR line intensity ratios and continuum properties. Follow-up observations with modern instruments (e.g. $JWST$ and $SOFIA$) with higher spatial and spectral resolution are encouraged for an extensive study of the SN ejecta and the SN dust.
We present a new catalogue of radio sources in the face-on spiral galaxy M83. Radio observations taken in 2011, 2015, and 2017 with the Australia Telescope Compact Array (ATCA) at 5.5 and 9 GHz have detected 270 radio sources. Although a small number of these sources are background extragalactic sources, most are either H II regions or supernova remnants (SNRs) within M83 itself. Three of the six historical supernovae are detected, as is the very young remnant that had been identified in a recent study, which is likely the result of a supernova that exploded in the last ~100 years but was missed. All of these objects are generally fading with time. Confusion limits our ability to measure the radio emission from a number of the SNRs in M83, but 64 were detected in unconfused regions, and these have the approximate power-law luminosity function which has been observed in other galaxies. The SNRs in M83 are systematically smaller in diameter and brighter than those that have been detected at radio wavelengths in M33. A number of the radio sources are coincident with X-ray sources in M83; most of these coincident sources turn out to be supernova remnants. Our dual frequency observations are among the most sensitive to date for a spiral galaxy outside the Local Group; despite this we were not able to place realistic constraints on the spectral indices, and as a result, it was not possible to search for supernova remnants based on their radio properties alone.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا