Do you want to publish a course? Click here

A new look at effective interactions between microgel particles

67   0   0.0 ( 0 )
 Added by Nicoletta Gnan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermoresponsive microgels find widespread use as colloidal model systems, because their temperature-dependent size allows facile tuning of their volume fraction in situ. However, an interaction potential unifying their behavior across the entire phase diagram is sorely lacking. Here we investigate microgel suspensions in the fluid regime at different volume fractions and temperatures, and in the presence of another population of small microgels, combining confocal microscopy experiments and numerical simulations. We find that effective interactions between microgels are clearly temperature dependent. In addition, microgel mixtures possess an enhanced stability compared to hard colloid mixtures - a property not predicted by a simple Hertzian model. Based on numerical calculations we propose a multi-Hertzian model, which reproduces the experimental behaviour for all studied conditions. Our findings highlight that effective interactions between microgels are much more complex than usually assumed, displaying a crucial dependence on temperature and the internal core-corona architecture of the particles.



rate research

Read More

Using monomer-resolved Molecular Dynamics simulations and theoretical arguments based on the radial dependence of the osmotic pressure in the interior of a star, we systematically investigate the effective interactions between hard, colloidal particles and star polymers in a good solvent. The relevant parameters are the size ratio q between the stars and the colloids, as well as the number of polymeric arms f (functionality) attached to the common center of the star. By covering a wide range of qs ranging from zero (star against a flat wall) up to about 0.75, we establish analytical forms for the star-colloid interaction which are in excellent agreement with simulation results. A modified expression for the star-star interaction for low functionalities, f < 10 is also introduced.
Responsive poly-N-isopropylacrylamide-based microgels are commonly used as model colloids with soft repulsive interactions. It has been shown that the microgel-microgel interaction in solution can be easily adjusted by varying the environmental parameters, e.g., temperature, pH, or salt concentration. Furthermore, microgels readily adsorb to liquid-gas and liquid-liquid interfaces forming responsive foams and emulsions that can be broken on-demand. In this work, we explore the interactions between microgel monolayers at the air-water interface and a hard colloid in the water. Force-distance curves between the monolayer and a silica particle were measured with the Monolayer Particle Interaction Apparatus. The measurements were conducted at different temperatures and lateral compression, i.e., different surface pressures. The force-distance approach curves display long-range repulsive forces below the volume phase transition temperature of the microgels. Temperature and lateral compression reduce the stiffness of the monolayer. The adhesion increases with temperature and decreases with a lateral compression of the monolayer. When compressed laterally, the interactions between the microgels are hardly affected by temperature, as the directly adsorbed microgel fractions are nearly insensitive to temperature. In contrast, our findings show that the temperature-dependent swelling of the microgel fractions in the aqueous phase strongly influences the interaction with the probe. The microgel monolayer changes from a soft to a hard repulsive interface.
188 - Antoine Berut 2014
We measure the energy exchanged between two hydrodynamically coupled micron-sized Brownian particles trapped in water by two optical tweezers. The system is driven out of equilibrium by random forcing the position of one of the two particles. The forced particle behaves as it has an effective temperature higher than that of the other bead. This driving modifies the equilibrium variances and cross-correlation functions of the bead positions: we measure an energy flow between the particles and an instantaneous cross-correlation, proportional to the effective temperature difference between the two particles. A model of the interaction which is based on classical hydrodynamic coupling tensors is proposed. The theoretical and experimental results are in excellent agreement.
We study effective two- and three-body interactions between non-active colloidal inclusions in an active bath of chiral or non-chiral particles, using Brownian Dynamics simulations within a standard, two-dimensional model of disk-shaped inclusions and active particles. In a non-chiral active bath, we first corroborate previous findings on effective two-body repulsion mediated between the inclusions by elucidating the detailed non-monotonic features of the two-body force profiles, including a primary maximum, and a secondary hump at larger separations that was not previously reported. We then show that these features arise directly from the formation, and sequential overlaps, of circular layers (or rings) of active particles around the inclusions, as the latter are brought to small surface separations. These rings extend to radial distances of a few active-particle radii from the surface of inclusions, giving the hard-core inclusions relatively thick, soft, repulsive shoulders, whose multiple overlaps then enable significant (non-pairwise) three-body forces in both non-chiral and chiral active baths. The resulting three-body forces can even exceed the two-body forces in magnitude and display distinct repulsive and attractive regimes at intermediate to large self-propulsion strengths. In a chiral active bath, we show that, while active particles still tend to accumulate at the immediate vicinity of the inclusions, they exhibit strong depletion from the intervening region between the inclusions, and partial depletion from relatively thick, circular, zones further away from the inclusions. In this case, the effective, predominantly repulsive, interactions between the inclusions turn to active, chirality-induced, depletion-type attractions, acting over an extended range of separations.
Colloidal inclusions suspended in a bath of smaller particles experience an effective bath-mediated attraction at small intersurface separations, which is known as the depletion interaction. In an active bath of nonchiral self-propelled particles, the effective force changes from attraction to repulsion; an effect that is suppressed, when the active bath particles are chiral. Using Brownian Dynamics simulations, we study the effects of channel confinement and bath chirality on the effective forces and torques that are mediated between two inclusions that may be fixed within the channel or may be allowed to rotate freely as a rigid dimer around its center of mass. We show that the confinement has a strong effect on the effective interactions, depending on the orientation of the dimer relative to the channel walls. The active particle chirality leads to a force imbalance and, hence, a net torque on the inclusion dimer, which we investigate as a function of the bath chirality strength and the channel height.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا