Do you want to publish a course? Click here

Background Infrared Sources for Studying the Galactic Centers Interstellar Gas

55   0   0.0 ( 0 )
 Added by Thomas R. Geballe
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We briefy describe the results of a K-band spectroscopic survey of over 500 highly reddened point-like objects on sightlines toward the Central Molecular Zone (CMZ) of the Galaxy. The goal was to find stars with featureless or nearly featureless spectra suitable for near- and mid-infrared absorption spectroscopy of the Galactic centers interstellar gas on sightlines spread across the CMZ. Until recently only a few such stars have been known outside of very localized sightlines in the vicinity of the Quintuplet and Central clusters. We have used Spitzer Space Telescope (GLIMPSE) and 2MASS photometry to select promising candidates, and over the last ten years have been acquiring low-resolution K-band spectra of them. As expected, the vast majority are cool and/or highly reddened red giants with complex photospheric spectra unsuitable for measuring faint interstellar lines. Approximately ten percent of them, whose observations are reported here, have featureless or nearly featureless spectra. Although not evenly distributed in Galactic longitude, these stars are scattered across the CMZ. Many of them are luminous stars that are deeply embedded in warm dust cocoons, and have K-band continua rising steeply to longer wavelengths. A significant fraction of them are hot stars of a variety of spectral types, including at least five newly discovered Wolf-Rayet stars. All of them should be suitable for spectroscopy of interstellar absorption lines at infrared wavelengths greater than 3 microns and many are also suitable at shorter wavelengths.



rate research

Read More

133 - A. Eckart , K. Muzic , S. Yazici 2012
There are a number of faint compact infrared excess sources in the central stellar cluster of the Milky Way. Their nature and origin is unclear. In addition to several isolated objects of this kind we find a small but dense cluster of co-moving sources (IRS13N) about 3 west of SgrA* just 0.5 north of the bright IRS13E cluster of WR and O-type stars. Based on their color and brightness, there are two main possibilities: (1) they may be dust embedded stars older than few Myr, or (2) extremely young, dusty stars with ages less than 1Myr. We present fist H- and Ks-band identifications or proper motions of the IRS13N members, the high velocity dusty S-cluster object (DSO), and other infrared excess sources in the central field. We also present results of NIR H- and Ks-band ESO-SINFONI integral field spectroscopy of ISR13N. We show that within the uncertainties, the proper motions of the IRS13N sources in Ks- and L-band are identical. This indicates that the bright L-band IRS13N sources are indeed dust enshrouded stars rather than core-less dust clouds. The proper motions show that the IRS13N sources are not strongly gravitationally bound to each other implying that they have been formed recently. We also present a first H- and Ks-band identification as well as proper motions and HKsL-colors of a fast moving DSO which was recently found in the cluster of high speed S-stars that surround the super-massive black hole Sagittarius A* (SgrA*). Most of the compact L-band excess emission sources have a compact H- or Ks-band counterpart and therefore are likely stars with dust shells or disks. Our new results and orbital analysis from our previous work favor the hypothesis that the infrared excess IRS13N members and other dusty sources close to SgrA* are very young dusty stars and that star formation at the GC is a continuously ongoing process.
We present near-infrared (0.8-1.8 $mu$m) spectra of 105 bright (${m_{J}}$ $<$ 10) stars observed with the low resolution spectrometer on the rocket-borne Cosmic Infrared Background Experiment (CIBER). As our observations are performed above the earths atmosphere, our spectra are free from telluric contamination, which makes them a unique resource for near-infrared spectral calibration. Two-Micron All Sky Survey (2MASS) photometry information is used to identify cross-matched stars after reduction and extraction of the spectra. We identify the spectral types of the observed stars by comparing them with spectral templates from the Infrared Telescope Facility (IRTF) library. All the observed spectra are consistent with late F to M stellar spectral types, and we identify various infrared absorption lines.
GCIRS 7, the brightest star in the Galactic central parsec, formed $6pm2$ Myr ago together with dozens of massive stars in a disk orbiting the central black-hole. It has been argued that GCIRS 7 is a pulsating body, on the basis of photometric variability. We present the first medium-resolution ($R=500$), K-band spectro-interferometric observations of GCIRS 7, using the GRAVITY instrument with the four auxiliary telescopes of the ESO VLTI. We looked for variations using two epochs, namely 2017 and 2019. We find GCIRS 7 to be moderately resolved with a uniform-disk photospheric diameter of $theta^*_text{UD}=1.55 pm 0.03$ mas ($R^*_text{UD}=1368 pm 26$ $R_odot$) in the K-band continuum. The narrow-band uniform-disk diameter increases above 2.3 $mu$m, with a clear correlation with the CO band heads in the spectrum. This correlation is aptly modeled by a hot ($T_text{L}=2368pm37$ K), geometrically thin molecular shell with a diameter of $theta_text{L}=1.74pm0.03$ mas, as measured in 2017. The shell diameter increased ($theta_text{L}=1.89pm0.03$ mas), while its temperature decreased ($T_text{L}=2140pm42$ K) in 2019. In contrast, the photospheric diameter $theta^*_text{UD}$ and the extinction up to the photosphere of GCIRS 7 ($A_{mathrm{K}_mathrm{S}}=3.18 pm 0.16$) have the same value within uncertainties at the two epochs. In the context of previous interferometric and photo-spectrometric measurements, the GRAVITY data allow for an interpretation in terms of photospheric pulsations. The photospheric diameter measured in 2017 and 2019 is significantly larger than previously reported using the PIONIER instrument ($theta_*=1.076 pm 0.093$ mas in 2013 in the H band). The parameters of the photosphere and molecular shell of GCIRS 7 are comparable to those of other red supergiants that have previously been studied using interferometry.
We used Spitzers Infrared Spectrograph (IRS) to observe stars in the Small Magellanic Cloud (SMC) selected from the Midcourse Space Experiment (MSX) Point Source Catalog. We concentrate on the dust properties of oxygen-rich evolved stars, which show less alumina than Galactic stars. This difference may arise from the SMCs lower metallicity, but it could be a selection effect: the SMC sample includes more stars which are brighter and thus more massive. The distribution of SMC stars along the silicate sequence looks more like that of Galactic red supergiants than asymptotic giant branch stars (AGBs). While many are definitively AGBs, several SMC stars show evidence of hot bottom burning. Other sources show mixed chemistry (oxygen-rich and carbon-rich features), including supergiants with PAH emission. MSX SMC 134 may be the first confirmed silicate/carbon star in the SMC, and MSX SMC 049 is a post-AGB candidate. MSX SMC 145, previously a candidate OH/IR star, is actually an AGB star with a background galaxy at z=0.16 along the same line-of-sight. We consider the overall characteristics of all the {em MSX} sources, the most infrared-bright objects in the SMC, in light of {em Spitzer}s higher sensitivity and resolution, and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the James Webb Space Telescope (JWST). Color-color diagrams using the IRS spectra and JWST mid-infrared filters show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different YSO classes.
Due to the extreme extinction towards the Galactic centre ($A_{V} sim 30$ mag), its stellar population is mainly studied in the near-infrared (NIR) regime. Therefore, a proper analysis of the NIR extinction curve is necessary to fully characterise the stellar structure and population of the inner part of the galaxy. We studied the dependence of the extinction index ($alpha_lambda$) in the NIR on the line of sight, wavelength, and extinction. We used the GALACTICNUCLEUS imaging survey, a high angular resolution catalogue ($0.2$) for the inner part of the Galaxy in $JHK_s$, and studied the spatial variation in the extinction index. We also applied two independent methods based on red clump stars to compute the extinction index between different bands and its variation with wavelength. We did not detect any significant line-of-sight or extinction variation in $alpha$ within the studied region in the nuclear stellar disc. The extinction index between $JH$ and $HK_s$ differs by $0.19 pm 0.05$. We obtained mean values for the extinction indices $alpha_{JH} = 2.43pm0.03$ and $alpha_{HK_s} = 2.23pm0.03$. The dependence of the extinction index on the wavelength could explain the differences obtained for $alpha_lambda$ in the literature since it was assumed constant for the NIR regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا