No Arabic abstract
This work demonstrates that two systematic errors, coherent betatron oscillations (CBO) and muon losses can be reduced through application of radio frequency (RF) electric fields, which ultimately increases the sensitivity of the muon $g-2$ experiments. As the ensemble of polarized muons goes around a weak focusing storage ring, their spin precesses, and when they decay through the weak interaction, $mu^+ rightarrow e^+ u_e bar{ u_mu}$, the decay positrons are detected by electromagnetic calorimeters. In addition to the expected exponential decay in the positron time spectrum, the weak decay asymmetry causes a modulation in the number of positrons in a selected energy range at the difference frequency between the spin and cyclotron frequencies, $omega_text{a}$. This frequency is directly proportional to the magnetic anomaly $a_mu =(g-2)/2$, where $g$ is the g-factor of the muon, which is slightly greater than 2. The detector acceptance depends on the radial position of the muon decay, so the CBO of the muon bunch following injection into the storage ring modulate the measured muon signal with the frequency $omega_text{CBO}$. In addition, the muon populations at the edge of the beam hit the walls of the vacuum chamber before decaying, which also affects the signal. Thus, reduction of CBO and unwanted muon loss increases the $a_mu$ measurement sensitivity. Numerical and experimental studies with RF electric fields yield more than a magnitude reduction of the CBO, with muon losses comparable to the conventional method.
The 3.6 sigma discrepancy between the predicted and measured values of the anomalous magnetic moment of positive muons can be explained by the existence of a new dark boson Z_mu with a mass in the sub-GeV range, which is coupled predominantly to the second and third lepton generations through the L_mu - L_tau current . After a discussion of the present phenomenological bounds on the Z_mu coupling, we show that if the Z_mu exists, it could be observed in the reaction mu+Z to mu+Z+Z_mu of a muon scattering off nuclei by looking for an excess of events with large missing muon beam energy in a detector due to the prompt bremsstrahlung Z_mu decay Z_mu to u u into a couple of neutrinos. We describe the experimental technique and the preliminary study of the feasibility for the proposed search. We show that this specific signal allows for a the search for the Z_mu with a sensitivity in the coupling constant alpha_mu > 10^{-11}, which is 3 orders of magnitude higher than the value required to explain the discrepancy. We point out that the availability of high-energy and -intensity muon beams at CERN SPS provides a unique opportunity to either discover or rule out the Z_mu in the proposed search in the near future. The experiment is based on the missing-energy approach developed for the searches for invisible decays of dark photons and (pseudo)scalar mesons at CERN and is complementary to these experiments.
A new experiment is described to detect a permanent electric dipole moment of the proton with a sensitivity of $10^{-29}ecdot$cm by using polarized magic momentum $0.7$~GeV/c protons in an all-electric storage ring. Systematic errors relevant to the experiment are discussed and techniques to address them are presented. The measurement is sensitive to new physics beyond the Standard Model at the scale of 3000~TeV.
This paper presents a conceptual approach to phase modulation of the cavity field in storage ring RF systems. An implementation of the concept on Dimtel low-level RF controllers is also presented. The method is illustrated with the test results from a cavity simulator, as well as an electron storage ring KARA.
In this paper, we demonstrate the connection between a magnetic storage ring with additional sextupole fields set so that the x and y chromaticities vanish and the maximizing of the lifetime of in-plane polarization (IPP) for a 0.97-GeV/c deuteron beam. The IPP magnitude was measured by continuously monitoring the down-up scattering asymmetry (sensitive to sideways polarization) in an in-beam, carbon-target polarimeter and unfolding the precession of the IPP due to the magnetic anomaly of the deuteron. The optimum operating conditions for a long IPP lifetime were made by scanning the field of the storage ring sextupole magnet families while observing the rate of IPP loss during storage of the beam. The beam was bunched and electron cooled. The IPP losses appear to arise from the change of the orbit circumference, and consequently the particle speed and spin tune, due to the transverse betatron oscillations of individual particles in the beam. The effects of these changes are canceled by an appropriate sextupole field setting.
A new experiment at Fermilab will measure the anomalous magnetic moment of the muon with a precision of 140 parts per billion (ppb). This measurement is motivated by the results of the Brookhaven E821 experiment that were first released more than a decade ago, which reached a precision of 540 ppb. As the corresponding Standard Model predictions have been refined, the experimental and theoretical values have persistently differed by about 3 standard deviations. If the Brookhaven result is confirmed at Fermilab with this improved precision, it will constitute definitive evidence for physics beyond the Standard Model. The experiment observes the muon spin precession frequency in flight in a well-calibrated magnetic field; the improvement in precision will require both 20 times as many recorded muon decay events as in E821 and a reduction by a factor of 3 in the systematic uncertainties. This paper describes the current experimental status as well as the plans for the upgraded magnet, detector and storage ring systems that are being prepared for the start of beam data collection in 2017.