Do you want to publish a course? Click here

The ALMA Development Roadmap

87   0   0.0 ( 0 )
 Added by H. Alwyn Wootten
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The present document outlines a roadmap for future developments that will significantly expand ALMAs capabilities and enable it to produce even more exciting science in the coming decades. The proposed developments are motivated by the groundbreaking results achieved by ALMA during its first five years of operation. The roadmap described here is based on input on new scientific directions and technical feasibility of future developments from the ALMA Science Advisory Committee (ASAC), the community, and technical documents. The Working Group recommends that the top development priority, based on scientific merit and technical feasibility, is to broaden the receiver IF bandwidth by at least a factor two, and to upgrade the associated electronics and correlator. These developments will advance a wide range of scientific studies by significantly reducing the time required for blind redshift surveys, chemical spectral scans, and deep continuum surveys. In order of scientific priority, receiver upgrades are recommended for intermediate (200-425 GHz), low (< 200 GHz), and high (> 425 GHz) frequencies. The Working Group recommends that the receiver and throughput developments proceed as soon as fiscally and technically feasible. As a first step, a technical and scientific group should be formed to formalize the top-level requirements. A team of systems engineers should then be charged with flowing these requirements down to the subsystems to form a consistent new set of minimum requirements, which future development projects would have to meet. Given that upgrading the throughput will impact many ALMA subsystems, the Working Group recommends that a team within ALMA be charged with coordinating and monitoring these developments. (Abbreviated)



rate research

Read More

72 - John Carpenter 2020
The Atacama Large Millimeter/submillimeter Array (ALMA) is the premier telescope for sensitive, high-resolution observations at millimeter and submillimeter wavelengths. The array consists of fifty 12-m diameter antennas that can be reconfigured to baselines as long as 16 km, twelve 7-m antennas that sample the short visibility spacings, and four 12-m antennas that provide total power capabilities for spectral line and continuum observations. Located in the Atacama desert in northern Chile at an elevation of 5000 m on the Chajnantour plateau, the ALMA site provides excellent observing conditions with low precipitable water vapor. The large number of antennas, the high-altitude site, and excellent receivers with low-noise performance provide an extremely sensitive, flexible instrument for submillimeter imaging.
(abridged) The Atacama Large Millimeter/submillimeter Array (ALMA) was the top-ranked priority for a new ground-based facility in the 2000 Canadian Long Range Plan. Ten years later, at the time of LRP2010, ALMA construction was well underway, with first science observations anticipated for 2011. In the past 8 years, ALMA has proved itself to be a high-impact, high-demand observatory, with record numbers of proposals submitted to the annual calls and large numbers of highly cited scientific papers across fields from protoplanetary disks to high-redshift galaxies and quasars. The LRP2010 ALMA white paper laid out 8 specific metrics that could be used to judge the success of Canadas participation in ALMA. Among these metrics were publications (number; impact), collaborations (international; multi-wavelength), and student training. To call out one particular metric, Canadians are making excellent use of ALMA in training graduate students and postdocs: as of June 2018, 12 of 23 Canadian first-author papers were led by a graduate student, and a further 4 papers were led by postdocs. All 8 metrics argue for Canadas involvement in ALMA over the past decade to be judged a success. The successful achievement of these wide-ranging goals argues strongly for Canadas continuing participation in ALMA over the next decade and beyond. Looking forward, our community needs to: (1) maintain Canadian access to ALMA and our competitiveness in using ALMA; (2) preserve full Canadian funding for our share of ALMA operations; (3) identify components of ALMA development in which Canada can play a significant role, including stimulating expertise in submillimetre instrumentation to capitalize on future opportunities; and (4) keep Canadians fully trained and engaged in ALMA, as new capabilities become available, reaching the widest possible community of potential users.
ALMA has been operating since 2011, but has not yet been populated with the full suite of intended frequency bands. In particular, ALMA Band 2 (67-90 GHz) is the final band in the original ALMA band definition to be approved for production. We aim to produce a wideband, tuneable, sideband-separating receiver with 28 GHz of instantaneous bandwidth per polarisation operating in the sky frequency range 67-116 GHz. Our design anticipates new ALMA requirements following the recommendations in the 2030 ALMA Development Roadmap. The cryogenic cartridge is designed to be compatible with the ALMA Band 2 cartridge slot, where the coldest components -- the feedhorns, orthomode transducers, and cryogenic low noise amplifiers -- operate at a temperature of 15 K. We use multiple simulation methods and tools to optimise our designs for both the passive optics and the active components. The cryogenic cartridge interfaces with a room temperature cartridge hosting the local oscillator (LO) and the downconverter module. This warm cartridge is largely based on GaAs semiconductor technology and is optimised to match the cryogenic receiver bandwidth with the required instantaneous LO tuning range. Our collaboration has designed, fabricated, and tested multiple technical solutions for each of the components, producing a state-of-the-art receiver covering the full ALMA Band 2 & 3 atmospheric window. The receiver is suitable for deployment on ALMA in the coming years, and is capable of dual-polarisation, sideband-separating observations in intermediate frequency bands spanning 4-18 GHz, for a total of 28 GHz on-sky bandwidth per polarisation channel. We conclude that the 67-116 GHz wideband implementation for ALMA Band 2 is now feasible, and this receiver is a compelling instrumental upgrade that will enhance observational capabilities and scientific reach.
The Atacama Large Millimeter/sub-millimeter Array (ALMA) is already revolutionising our understanding of the Universe. However, ALMA is not yet equipped with all of its originally planned receiver bands, which will allow it to observe over the full range of frequencies from 35-950 GHz accessible through the Earths atmosphere. In particular Band 2 (67-90 GHz) has not yet been approved for construction. Recent technological developments in cryogenic monolithic microwave integrated circuit (MMIC) high electron mobility transistor (HEMT) amplifier and orthomode transducer (OMT) design provide an opportunity to extend the originally planned on-sky bandwidth, combining ALMA Bands 2 and 3 into one receiver cartridge covering 67-116 GHz. The IF band definition for the ALMA project took place two decades ago, when 8 GHz of on-sky bandwidth per polarisation channel was an ambitious goal. The new receiver design we present here allows the opportunity to expand ALMAs wideband capabilities, anticipating future upgrades across the entire observatory. Expanding ALMAs instantaneous bandwidth is a high priority, and provides a number of observational advantages, including lower noise in continuum observations, the ability to probe larger portions of an astronomical spectrum for, e.g., widely spaced molecular transitions, and the ability to scan efficiently in frequency space to perform surveys where the redshift or chemical complexity of the object is not known a priori. Wider IF bandwidth also reduces uncertainties in calibration and continuum subtraction that might otherwise compromise science objectives. Here we provide an overview of the component development and overall design for this wideband 67-116 GHz cryogenic receiver cartridge, designed to operate from the Band 2 receiver cartridge slot in the current ALMA front end receiver cryostat.
The European Far-Infrared (FIR) Space Roadmap focuses on fundamental, yet still unresolved, astrophysical questions that can only be answered through a far-infrared space mission and gives an overview of the technology required to answer them. The document discusses topics ranging from Solar System and Planet Formation, Our Galaxy and nearby Galaxies and Distant Galaxies and Galaxy Evolution. The FIR Roadmap was open to comments from the wider astronomical community following a presentation during EWASS 2016.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا