Do you want to publish a course? Click here

A 30 GHz electro-optic frequency comb spanning 300 THz in the near infrared and visible

87   0   0.0 ( 0 )
 Added by Andrew Metcalf
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Beginning with a continuous wave laser at 1064 nm, we generate a 30 GHz electro-optic frequency comb which contains 100 lines spanning 3 THz. The initial comb is subsequently amplified, spectrally broadened in normal dispersion photonic crystal fiber, and then temporally compressed to provide 74 fs pulses with average power of up to 2.6 W. When launched into a second photonic crystal fiber with anomalous dispersion, a supercontinuum spanning 800-1350 nm is generated. Second harmonic generation allows for extension of the 30 GHz comb into the visible, yielding greater than 300 THz of total spectral bandwidth. Such a broad bandwidth, high repetition rate comb is a compelling source for astronomical spectrograph calibration.



rate research

Read More

High speed optical telecommunication is enabled by wavelength division multiplexing, whereby hundreds of individually stabilized lasers encode the information within a single mode optical fiber. In the seek for larger bandwidth the optical power sent into the fiber is limited by optical non-linearities within the fiber and energy consumption of the light sources starts to become a significant cost factor. Optical frequency combs have been suggested to remedy this problem by generating multiple laser lines within a monolithic device, their current stability and coherence lets them operate only in small parameter ranges. Here we show that a broadband frequency comb realized through the electro-optic effect within a high quality whispering gallery mode resonator can operate at low microwave and optical powers. Contrary to the usual third order Kerr non-linear optical frequency combs we rely on the second order non-linear effect which is much more efficient. Our result uses a fixed microwave signal which is mixed with an optical pump signal to generate a coherent frequency comb with a precisely determined carrier separation. The resonant enhancement enables us to operate with microwave powers three order magnitude smaller than in commercially available devices. We can expect the implementation into the next generation long distance telecommunication which relies on coherent emission and detection schemes to allow for operation with higher optical powers and at reduced cost.
A broadband visible blue-to-red, 10 GHz repetition rate frequency comb is generated by combined spectral broadening and triple-sum frequency generation in an on-chip silicon nitride waveguide. Ultra-short pulses of 150 pJ pulse energy, generated via electro-optic modulation of a 1560 nm continuous-wave laser, are coupled to a silicon nitride waveguide giving rise to a broadband near-infrared supercontinuum. Modal phase matching inside the waveguide allows direct triple-sum frequency transfer of the near-infrared supercontinuum into the visible wavelength range covering more than 250 THz from below 400 nm to above 600 nm wavelength. This scheme directly links the mature optical telecommunication band technology to the visible wavelength band and can find application in astronomical spectrograph calibration as well as referencing of continuous-wave lasers.
Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by mode-locked lasers or dispersion-engineered resonators with third-order Kerr nonlinearity. An alternative comb generation method uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. In this work, we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large electro-optic response, ultra-low optical loss and highly co-localized microwave and optical felds, while enabling dispersion engineering. Our measured EO frequency comb spans more than the entire telecommunications L-band (over 900 comb lines spaced at ~ 10 GHz), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 Hz to 100 MHz), and utilize this feature to generate dual frequency combs in a single resonator. Our results show that integrated EO comb generators, capable of generating wide and stable comb spectra, are a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy to optical communications.
The discovery and characterization of exoplanets around nearby stars is driven by profound scientific questions about the uniqueness of Earth and our Solar System, and the conditions under which life could exist elsewhere in our Galaxy. Doppler spectroscopy, or the radial velocity (RV) technique, has been used extensively to identify hundreds of exoplanets, but with notable challenges in detecting terrestrial mass planets orbiting within habitable zones. We describe infrared RV spectroscopy at the 10 m Hobby-Eberly telescope that leverages a 30 GHz electro-optic laser frequency comb with nanophotonic supercontinuum to calibrate the Habitable Zone Planet Finder spectrograph. Demonstrated instrument precision <10 cm/s and stellar RVs approaching 1 m/s open the path to discovery and confirmation of habitable zone planets around M-dwarfs, the most ubiquitous type of stars in our Galaxy.
Electro-optic frequency combs were employed to rapidly interrogate an optomechanical sensor, demonstrating spectral resolution substantially exceeding that possible with a mode-locked frequency comb. Frequency combs were generated using an integrated-circuit-based direct digital synthesizer and utilized in a self-heterodyne configuration. Unlike approaches based upon laser locking or sweeping, the present approach allows rapid, parallel measurements of full optical cavity modes, large dynamic range of sensor displacement, and acquisition across a wide frequency range between DC and 500 kHz. In addition to being well suited to measurements of cavity optomechanical sensors, this optical frequency comb-based approach can be utilized for interrogation in a wide range of physical and chemical sensors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا