No Arabic abstract
A new Riemann solver is presented for the ideal magnetohydrodynamics (MHD) equations with the so-called Boris correction. The Boris correction is applied to reduce wave speeds, avoiding an extremely small timestep in MHD simulations. The proposed Riemann solver, Boris-HLLD, is based on the HLLD solver. As done by the original HLLD solver, (1) the Boris-HLLD solver has four intermediate states in the Riemann fan when left and right states are given, (2) it resolves the contact discontinuity, Alfven waves, and fast waves, and (3) it satisfies all the jump conditions across shock waves and discontinuities except for slow shock waves. The results of a shock tube problem indicate that the scheme with the Boris-HLLD solver captures contact discontinuities sharply and it exhibits shock waves without any overshoot when using the minmod limiter. The stability tests show that the scheme is stable when $|u| lesssim 0.5c$ for a low Alfven speed ($V_A lesssim c$), where $u$, $c$, and $V_A$ denote the gas velocity, speed of light, and Alfven speed, respectively. For a high Alfven speed ($V_A gtrsim c$), where the plasma beta is relatively low in many cases, the stable region is large, $|u| lesssim (0.6-1) c$. We discuss the effect of the Boris correction on physical quantities using several test problems. The Boris-HLLD scheme can be useful for problems with supersonic flows in which regions with a very low plasma beta appear in the computational domain.
A simple form of the Boris solver in particle-in-cell (PIC) simulation is proposed. It employs an exact solution of the Lorentz-force part, and it is equivalent to the Boris solver with a gyrophase correction. As a favorable property for stable schemes, this form preserves a volume in the phase space. Numerical tests of the Boris solvers are conducted by test-particle simulations and by PIC simulations. The proposed form provides better accuracy than the popular form, while it only requires few additional computation time.
Convection is an important physical process in astrophysics well-studied using numerical simulations under the Boussinesq and/or anelastic approximations. However these approaches reach their limits when compressible effects are important in the high Mach flow regime, e.g. in stellar atmospheres or in the presence of accretion shocks. In order to tackle these issues, we propose a new high performance and portable code, called ARK with a numerical solver well-suited for the stratified compressible Navier-Stokes equations. We take a finite volume approach with machine precision conservation of mass, transverse momentum and total energy. Based on previous works in applied mathematics we propose the use of a low Mach correction to achieve a good precision in both low and high Mach regimes. The gravity source term is discretized using a well-balanced scheme in order to reach machine precision hydrostatic balance. This new solver is implemented using the Kokkos library in order to achieve high performance computing and portability across different architectures (e.g. multi-core, many-core, and GP-GPU). We show that the low-Mach correction allows to reach the low-Mach regime with a much better accuracy than a standard Godunov-type approach. The combined well-balanced property and the low-Mach correction allowed us to trigger Rayleigh-Benard convective modes close to the critical Rayleigh number. Furthermore we present 3D turbulent Rayleigh-Benard convection with low diffusion using the low-Mach correction leading to a higher kinetic energy power spectrum. These results are very promising for future studies of high Mach and highly stratified convective problems in astrophysics.
We construct Boris-type schemes for integrating the motion of charged particles in particle-in-cell (PIC) simulation. The new solvers virtually combine the 2-step Boris procedure arbitrary n times in the Lorentz-force part, and therefore we call them the multiple Boris solvers. Using Chebyshev polynomials, a one-step form of the new solvers is provided. The new solvers give n^2 times smaller errors, allow larger timesteps, and have a long-term stability. We present numerical tests of the new solvers, in comparison with other particle integrators.
We present new methods to solve the Riemann problem both exactly and approximately for general equations of state (EoS) to facilitate realistic modeling and understanding of astrophysical flows. The existence and uniqueness of the new exact general EoS Riemann solution can be guaranteed if the EoS is monotone regardless of the physical validity of the EoS. We confirm that: (1) the solution of the new exact general EoS Riemann solver and the solution of the original exact Riemann solver match when calculating perfect gas Euler equations; (2) the solution of the new Harten-Lax-van Leer-Contact (HLLC) general EoS Riemann solver and the solution of the original HLLC Riemann solver match when working with perfect gas EoS; and (3) the solution of the new HLLC general EoS Riemann solver approaches the new exact solution. We solve the EoS with two methods, one is to interpolate 2D EoS tables by the bi-linear interpolation method, and the other is to analytically calculate thermodynamic variables at run-time. The interpolation method is more general as it can work with other monotone and realistic EoS while the analytic EoS solver introduced here works with a relatively idealized EoS. Numerical results confirm that the accuracy of the two EoS solvers is similar. We study the efficiency of these two methods with the HLLC general EoS Riemann solver and find that analytic EoS solver is faster in the test problems. However, we point out that a combination of the two EoS solvers may become favorable in some specific problems. Throughout this research, we assume local thermal equilibrium.
The Breit correction, the finite-light-speed correction for the Coulomb interaction of the electron-electron interaction in $ O left( 1/ c^2 right) $, is introduced to density functional theory (DFT) based on the non-relativistic reduction with the local density approximation. Using this newly developed relativistic DFT, it is found that the possible outer-most electron of lawrencium atom is the $ p $ orbital instead of the $ d $ orbital, which is consistent with the previous calculations based on wave-function theory. A possible explanation of the anomalous behavior of its first ionization energy is also given. This DFT scheme provides a practical calculation method for the study of properties of super-heavy elements.