In this paper we provide a comprehensive description of the internal dynamics of G0.253+0.016 (a.k.a. the Brick); one of the most massive and dense molecular clouds in the Galaxy to lack signatures of widespread star formation. As a potential host to a future generation of high-mass stars, understanding largely quiescent molecular clouds like G0.253+0.016 is of critical importance. In this paper, we reanalyse Atacama Large Millimeter Array cycle 0 HNCO $J=4(0,4)-3(0,3)$ data at 3 mm, using two new pieces of software which we make available to the community. First, scousepy, a Python implementation of the spectral line fitting algorithm scouse. Secondly, acorns (Agglomerative Clustering for ORganising Nested Structures), a hierarchical n-dimensional clustering algorithm designed for use with discrete spectroscopic data. Together, these tools provide an unbiased measurement of the line of sight velocity dispersion in this cloud, $sigma_{v_{los}, {rm 1D}}=4.4pm2.1$ kms$^{-1}$, which is somewhat larger than predicted by velocity dispersion-size relations for the Central Molecular Zone (CMZ). The dispersion of centroid velocities in the plane of the sky are comparable, yielding $sigma_{v_{los}, {rm 1D}}/sigma_{v_{pos}, {rm 1D}}sim1.2pm0.3$. This isotropy may indicate that the line-of-sight extent of the cloud is approximately equivalent to that in the plane of the sky. Combining our kinematic decomposition with radiative transfer modelling we conclude that G0.253+0.016 is not a single, coherent, and centrally-condensed molecular cloud; the Brick is not a emph{brick}. Instead, G0.253+0.016 is a dynamically complex and hierarchically-structured molecular cloud whose morphology is consistent with the influence of the orbital dynamics and shear in the CMZ.