No Arabic abstract
The effect of signals on stability, throughput region, and delay in a two-user slotted ALOHA based random-access system with collisions is considered. This work gives rise to the development of random access G-networks, which can model virus attacks or other malfunctions and introduce load balancing in highly interacting networks. The users are equipped with infinite capacity buffers accepting external bursty arrivals. We consider both negative and triggering signals. Negative signals delete a packet from a user queue, while triggering signals cause the instantaneous transfer of packets among user queues. We obtain the exact stability region, and show that the stable throughput region is a subset of it. Moreover, we perform a compact mathematical analysis to obtain exact expressions for the queueing delay by solving a Riemann boundary value problem. A computationally efficient way to obtain explicit bounds for the queueing delay is also presented. The theoretical findings are numerically evaluated and insights regarding the system performance are derived.
Leveraging recent progress in physical-layer network coding we propose a new approach to random access: When packets collide, it is possible to recover a linear combination of the packets at the receiver. Over many rounds of transmission, the receiver can thus obtain many linear combinations and eventually recover all original packets. This is by contrast to slotted ALOHA where packet collisions lead to complete erasures. The throughput of the proposed strategy is derived and shown to be significantly superior to the best known strategies, including multipacket reception.
To support machine-type communication (MTC), massive multiple-input multiple-output (MIMO) has been considered for grant-free random access. In general, the performance of grant-free random access with massive MIMO is limited by the number of preambles and the number of active devices. In particular, when there are a number of active devices transmitting data packets simultaneously, the signal-to-interference-plus-noise ratio (SINR) cannot be high enough for successful decoding. In this paper, in order to improve performance, we consider immediate re-transmissions for an active device that has a low SINR although it does not experience preamble collision to exploit re-transmission diversity (RTD) gain. To see the performance of the proposed approach, we perform throughput analysis with certain approximations and assumption. Since the proposed approach can be unstable due to immediate re-transmissions, conditions for stable systems are also studied. Simulations are carried out and it is shown that analysis results reasonably match simulation results.
This letter considers two groups of source nodes. Each group transmits packets to its own designated destination node over single-hop links and via a cluster of relay nodes shared by both groups. In an effort to boost reliability without sacrificing throughput, a scheme is proposed, whereby packets at the relay nodes are combined using two methods; packets delivered by different groups are mixed using non-orthogonal multiple access principles, while packets originating from the same group are mixed using random linear network coding. An analytical framework that characterizes the performance of the proposed scheme is developed, compared to simulation results and benchmarked against a counterpart scheme that is based on orthogonal multiple access.
We study two distinct, but overlapping, networks that operate at the same time, space, and frequency. The first network consists of $n$ randomly distributed emph{primary users}, which form either an ad hoc network, or an infrastructure-supported ad hoc network with $l$ additional base stations. The second network consists of $m$ randomly distributed, ad hoc secondary users or cognitive users. The primary users have priority access to the spectrum and do not need to change their communication protocol in the presence of secondary users. The secondary users, however, need to adjust their protocol based on knowledge about the locations of the primary nodes to bring little loss to the primary networks throughput. By introducing preservation regions around primary receivers and avoidance regions around primary base stations, we propose two modified multihop routing protocols for the cognitive users. Base on percolation theory, we show that when the secondary network is denser than the primary network, both networks can simultaneously achieve the same throughput scaling law as a stand-alone network. Furthermore, the primary network throughput is subject to only a vanishingly fractional loss. Specifically, for the ad hoc and the infrastructure-supported primary models, the primary network achieves sum throughputs of order $n^{1/2}$ and $max{n^{1/2},l}$, respectively. For both primary network models, for any $delta>0$, the secondary network can achieve sum throughput of order $m^{1/2-delta}$ with an arbitrarily small fraction of outage. Thus, almost all secondary source-destination pairs can communicate at a rate of order $m^{-1/2-delta}$.
This paper considers a class of multi-channel random access algorithms, where contending devices may send multiple copies (replicas) of their messages to the central base station. We first develop a hypothetical algorithm that delivers a lower estimate for the access delay performance within this class. Further, we propose a feasible access control algorithm achieving low access delay by sending multiple message replicas, which approaches the performance of the hypothetical algorithm. The resulting performance is readily approximated by a simple lower bound, which is derived for a large number of channels.