Do you want to publish a course? Click here

Freely suspended, van-der-Waals bound organic nm-thin functional films: mechanical and electronic characterization

61   0   0.0 ( 0 )
 Added by Thomas Weitz
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Determining the electronic properties of nanoscopic, low-dimensional materials free of external influences is key to discovery and understanding of new physical phenomena. An example is the suspension of graphene, which has allowed access to their intrinsic charge transport properties. Furthermore, suspending thin films enables their application as membranes, sensors, or resonators, as has been explored extensively. While the suspension of covalently-bound, electronically-active thin films is well established, semiconducting thin films composed of functional molecules only held together by van-der-Waals interactions could only be studied supported by a substrate. In the present work, it is shown that by utilizing a surface-crystallization method, electron conductive films with thicknesses of down to 6nm and planar chiral optical activity can be freely suspended across several hundreds of nm. The suspended membranes exhibit a Youngs modulus of 2 to 13 GPa and are electronically decoupled from the environment, as established by temperature dependent field-effect transistor measurements.



rate research

Read More

The fundamental ideas for a non-local density functional theory -- capable of reliably capturing van der Waals interaction -- were already conceived in the 1990s. In 2004, a seminal paper introduced the first practical non-local exchange-correlation functional called vdW-DF, which has become widely successful and laid the foundation for much further research. However, since then, the functional form of vdW-DF has remained unchanged. Several successful modifications paired the original functional with different (local) exchange functionals to improve performance and the successor vdW-DF2 also updated one internal parameter. Bringing together different insights from almost two decades of development and testing, we present the next-generation non-local correlation functional called vdW-DF3, in which we change the functional form while staying true to the original design philosophy. Although many popular functionals show good performance around the binding separation of van der Waals complexes, they often result in significant errors at larger separations. With vdW-DF3, we address this problem by taking advantage of a recently uncovered and largely unconstrained degree of freedom within the vdW-DF framework that can be constrained through empirical input, making our functional semi-empirical. For two different parameterizations, we benchmark vdW-DF3 against a large set of well-studied test cases and compare our results with the most popular functionals, finding good performance in general for a wide array of systems and a significant improvement in accuracy at larger separations. Finally, we discuss the achievable performance within the current vdW-DF framework, the flexibility in functional design offered by vdW-DF3, as well as possible future directions for non-local van der Waals density functional theory.
Controlling magnetic states by a small current is essential for the next-generation of energy-efficient spintronic devices. However, it invariably requires considerable energy to change a magnetic ground state of intrinsically quantum nature governed by fundamental Hamiltonian, once stabilized below a phase transition temperature. We report that surprisingly an in-plane current can tune the magnetic state of nm-thin van der Waals ferromagnet Fe3GeTe2 from a hard magnetic state to a soft magnetic state. It is the direct demonstration of the current-induced substantial reduction of the coercive field. This surprising finding is possible because the in-plane current produces a highly unusual type of gigantic spin-orbit torque for Fe3GeTe2. And we further demonstrate a working model of a new nonvolatile magnetic memory based on the principle of our discovery in Fe3GeTe2, controlled by a tiny current. Our findings open up a new window of exciting opportunities for magnetic van der Waals materials with potentially huge impacts on the future development of spintronic and magnetic memory.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, the family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
The properties of metal-semiconductor junctions are often unpredictable because of non-ideal interfacial structures, such as interfacial defects or chemical reactions introduced at junctions. Black phosphorus (BP), an elemental two-dimensional (2D) semiconducting crystal, possesses the puckered atomic structure with high chemical reactivity, and the establishment of a realistic atomic-scale picture of BPs interface toward metallic contact has remained elusive. Here we examine the interfacial structures and properties of physically-deposited metals of various kinds on BP. We find that Au, Ag, and Bi form single-crystalline films with (110) orientation through guided van der Waals epitaxy. Transmission electron microscopy and X-ray photoelectron spectroscopy confirm that atomically sharp van der Waals metal-BP interfaces forms with exceptional rotational alignment. Under a weak metal-BP interaction regime, the BPs puckered structure play an essential role in the adatom assembly process and can lead to the formation of a single crystal, which is supported by our theoretical analysis and calculations. The experimental survey also demonstrates that the BP-metal junctions can exhibit various types of interfacial structures depending on metals, such as the formation of polycrystalline microstructure or metal phosphides. This study provides a guideline for obtaining a realistic view on metal-2D semiconductor interfacial structures, especially for atomically puckered 2D crystals.
We investigated low-frequency current fluctuations, i.e. noise, in the quasi-two-dimensional (2D) van der Waals antiferromagnetic semiconductor FePS3 with the electronic bandgap of 1.5 eV. The electrical and noise characteristics of the p-type, highly resistive, thin films of FePS3 were measured at different temperatures. The noise spectral density was of the 1/f - type over most of the examined temperature range but revealed well-defined Lorentzian bulges, and increased strongly near the Neel temperature of 118 K (f is the frequency). Intriguingly, the noise spectral density attained its minimum at temperature T~200 K, which was attributed to an interplay of two opposite trends in noise scaling - one for semiconductors and another for materials with the phase transitions. The Lorentzian corner frequencies revealed unusual dependence on temperature and bias voltage, suggesting that their origin is different from the generation - recombination noise in conventional semiconductors. The obtained results are important for proposed applications of antiferromagnetic semiconductors in spintronic devices. They also attest to the power of the noise spectroscopy for monitoring various phase transitions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا