Do you want to publish a course? Click here

Phononic Topological States in 1D Quasicrystals

85   0   0.0 ( 0 )
 Added by Manoel Vasconcelos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically analyze the spectrum of phonons of a one-dimensional quasiperiodic lattice. We simulate the quasicrystal from the classic system of spring-bound atoms with a force constant modulated by the Aubry-Andre model, so that its value is slightly different in each site of the lattice. From the equations of motion, we obtained the equivalent phonon spectrum of the Hofstadter butterfly, characterizing a multifractal. In this spectrum, we obtained the extended, critical and localized regimes, and we observed that the multifractal characteristic is sensitive to the number of atoms and the $lambda$ parameter of our model. We also verified the presence of border states for phonons, where some modes in the system boundaries present vibrations. Through the measurement of localization of the individual displacements in each site, we verify the presence of a phase transition through the Inverse Participation Rate (IPR) for $lambda= 1.0 $, where the system changes from extended to localized.



rate research

Read More

With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.
The realization of the quantum anomalous Hall (QAH) effect without magnetic doping attracts intensive interest since magnetically doped topological insulators usually possess inhomogeneity of ferromagnetic order. Here, we propose a different strategy to realize intriguing QAH states arising from the interplay of light and non-magnetic disorder in two-dimensional topologically trivial systems. By combining the Born approximation and Floquet theory, we show that a time-reversal invariant disorder-induced topological insulator, known as the topological Anderson insulator (TAI), would evolve into a time-reversal broken TAI and then into a QAH insulator by shining circularly polarized light. We utilize spin and charge Hall conductivities, which can be measured in experiments directly, to distinguish these three different topological phases. This work not only offers an exciting opportunity to realize the high-temperature QAH effect without magnetic orders, but also is important for applications of topological states to spintronics.
Non-interacting spinless electrons in one-dimensional quasicrystals, described by the Aubry-Andr{e}-Harper (AAH) Hamiltonian with nearest neighbour hopping, undergoes metal to insulator transition (MIT) at a critical strength of the quasi-periodic potential. This transition is related to the self-duality of the AAH Hamiltonian. Interestingly, at the critical point, which is also known as the self-dual point, all the single particle wave functions are multifractal or non-ergodic in nature, while they are ergodic and delocalized (localized) below (above) the critical point. In this work, we have studied the one dimensional quasi-periodic AAH Hamiltonian in the presence of spin-orbit (SO) coupling of Rashba type, which introduces an additional spin conserving complex hopping and a spin-flip hopping. We have found that, although the self-dual nature of AAH Hamiltonian remains unaltered, the self-dual point gets affected significantly. Moreover, the effect of the complex and spin-flip hoppings are identical in nature. We have extended the idea of Kohns localization tensor calculations for quasi-particles and detected the critical point very accurately. These calculations are followed by detailed multifractal analysis along with the computation of inverse participation ratio and von Neumann entropy, which clearly demonstrate that the quasi-particle eigenstates are indeed multifractal and non-ergodic at the critical point. Finally, we mapped out the phase diagram in the parameter space of quasi-periodic potential and SO coupling strength.
We find that quasiperiodicity-induced localization-delocalization transitions in generic 1D systems are associated with hidden dualities that generalize the well-known duality of the Aubry-Andre model. For a given energy window, such duality is locally defined near the transition and can be explicitly determined by considering commensurate approximants. This relies on the construction of an auxiliary 2D Fermi surface of the commensurate approximants as a function of the phase-twisting boundary condition and of the phase-shifting real-space structure. Considering widely different families of quasiperiodic 1D models, we show that, around the critical point of the limiting quasiperiodic system, the auxiliary Fermi surface of a high-enough-order approximant converges to a universal form. This allows us to devise a highly-accurate method to compute mobility edges and duality transformations for generic 1D quasiperiodic systems through their commensurate approximants. To illustrate the power of this approach, we consider several previously studied systems, including generalized Aubry-Andre models and coupled Moire chains. Our findings bring a new perspective to examine quasiperiodicity-induced localization-delocalization transitions in 1D, provide a working criterion for the appearance of mobility edges, and an explicit way to understand the properties of eigenstates close and at the transition.
160 - Alon Beck , Moshe Goldstein 2020
The quest for nonequilibrium quantum phase transitions is often hampered by the tendency of driving and dissipation to give rise to an effective temperature, resulting in classical behavior. Could this be different when the dissipation is engineered to drive the system into a nontrivial quantum coherent steady state? In this work we shed light on this issue by studying the effect of disorder on recently-introduced dissipation-induced Chern topological states, and examining the eigenmodes of the Hermitian steady state density matrix or entanglement Hamiltonian. We find that, similarly to equilibrium, each Landau band has a single delocalized level near its center. However, using three different finite size scaling methods we show that the critical exponent $ u$ describing the divergence of the localization length upon approaching the delocalized state is significantly different from equilibrium if disorder is introduced into the non-dissipative part of the dynamics. This indicates a different type of nonequilibrium quantum critical universality class accessible in cold-atom experiments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا