Imaging the Distribution of Solids in Planet-forming Disks undergoing Hydrodynamical Instabilities with the Next Generation Very Large Array


Abstract in English

We present simulations of the capabilities of the Next Generation Very Large Array to image at high angular resolution substructures in the dust emission of protoplanetary disks. The main goal of this study is to investigate the kinds of substructures that are expected by state-of-the-art 3D simulations of disks and that an instrument like the ngVLA, with its current design, can detect. The disk simulations adopted in this investigation consist of global 3D radiation-hydrodynamics models with embedded particles, the latter representing dust grains. Our work shows that the ngVLA can detect and spatially resolve, down to sub-astronomical unit scales in disks in nearby star forming regions, the dust continuum emission at 3mm from azimuthal asymmetric structures, as well as from weak rings and gaps produced in these models as a consequence of the vertical shear instability (VSI). This hydrodynamical instability has been proposed to generate turbulence in regions of weak coupling between the disk gas and magnetic field, as well as to form vortices which may be preferred locations of planetesimal formation.

Download