Do you want to publish a course? Click here

Hierarchical Matrix Operations on GPUs: Matrix-Vector Multiplication and Compression

430   0   0.0 ( 0 )
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Hierarchical matrices are space and time efficient representations of dense matrices that exploit the low rank structure of matrix blocks at different levels of granularity. The hierarchically low rank block partitioning produces representations that can be stored and operated on in near-linear complexity instead of the usual polynomial complexity of dense matrices. In this paper, we present high performance implementations of matrix vector multiplication and compression operations for the $mathcal{H}^2$ variant of hierarchical matrices on GPUs. This variant exploits, in addition to the hierarchical block partitioning, hierarchical bases for the block representations and results in a scheme that requires only $O(n)$ storage and $O(n)$ complexity for the mat-vec and compression kernels. These two operations are at the core of algebraic operations for hierarchical matrices, the mat-vec being a ubiquitous operation in numerical algorithms while compression/recompression represents a key building block for other algebraic operations, which require periodic recompression during execution. The difficulties in developing efficient GPU algorithms come primarily from the irregular tree data structures that underlie the hierarchical representations, and the key to performance is to recast the computations on flattened trees in ways that allow batched linear algebra operations to be performed. This requires marshaling the irregularly laid out data in a way that allows them to be used by the batched routines. Marshaling operations only involve pointer arithmetic with no data movement and as a result have minimal overhead. Our numerical results on covariance matrices from 2D and 3D problems from spatial statistics show the high efficiency our routines achieve---over 550GB/s for the bandwidth-limited mat-vec and over 850GFLOPS/s in sustained performance for the compression on the P100 Pascal GPU.



rate research

Read More

256 - Xiaoyan Liu , Yi Liu , Ming Dun 2021
Although the matrix multiplication plays a vital role in computational linear algebra, there are few efficient solutions for matrix multiplication of the near-sparse matrices. The Sparse Approximate Matrix Multiply (SpAMM) is one of the algorithms to fill the performance gap neglected by traditional optimizations for dense/sparse matrix multiplication. However, existing SpAMM algorithms fail to exploit the performance potential of GPUs for acceleration. In this paper, we present cuSpAMM, the first parallel SpAMM algorithm optimized for multiple GPUs. Several performance optimizations have been proposed, including algorithm re-design to adapt to the thread parallelism, blocking strategies for memory access optimization, and the acceleration with the tensor core. In addition, we scale cuSpAMM to run on multiple GPUs with an effective load balance scheme. We evaluate cuSpAMM on both synthesized and real-world datasets on multiple GPUs. The experiment results show that cuSpAMM achieves significant performance speedup compared to vendor optimized cuBLAS and cuSPARSE libraries.
Sparse matrix-vector multiplication (spMVM) is the dominant operation in many sparse solvers. We investigate performance properties of spMVM with matrices of various sparsity patterns on the nVidia Fermi class of GPGPUs. A new padded jagged diagonals storage (pJDS) format is proposed which may substantially reduce the memory overhead intrinsic to the widespread ELLPACK-R scheme. In our test scenarios the pJDS format cuts the overall spMVM memory footprint on the GPGPU by up to 70%, and achieves 95% to 130% of the ELLPACK-R performance. Using a suitable performance model we identify performance bottlenecks on the node level that invalidate some types of matrix structures for efficient multi-GPGPU parallelization. For appropriate sparsity patterns we extend previous work on distributed-memory parallel spMVM to demonstrate a scalable hybrid MPI-GPGPU code, achieving efficient overlap of communication and computation.
We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based on the level of the GPU memory hierarchy in which the matrices can reside and show substantial speedups against streamed cuSOLVER SVDs. The resulting batched routine is a key component of hierarchical matrix compression, opening up opportunities to perform H-matrix arithmetic efficiently on GPUs.
282 - Weifeng Liu , Brian Vinter 2015
General sparse matrix-matrix multiplication (SpGEMM) is a fundamental building block for numerous applications such as algebraic multigrid method (AMG), breadth first search and shortest path problem. Compared to other sparse BLAS routines, an efficient parallel SpGEMM implementation has to handle extra irregularity from three aspects: (1) the number of nonzero entries in the resulting sparse matrix is unknown in advance, (2) very expensive parallel insert operations at random positions in the resulting sparse matrix dominate the execution time, and (3) load balancing must account for sparse data in both input matrices. In this work we propose a framework for SpGEMM on GPUs and emerging CPU-GPU heterogeneous processors. This framework particularly focuses on the above three problems. Memory pre-allocation for the resulting matrix is organized by a hybrid method that saves a large amount of global memory space and efficiently utilizes the very limited on-chip scratchpad memory. Parallel insert operations of the nonzero entries are implemented through the GPU merge path algorithm that is experimentally found to be the fastest GPU merge approach. Load balancing builds on the number of necessary arithmetic operations on the nonzero entries and is guaranteed in all stages. Compared with the state-of-the-art CPU and GPU SpGEMM methods, our approach delivers excellent absolute performance and relative speedups on various benchmarks multiplying matrices with diverse sparsity structures. Furthermore, on heterogeneous processors, our SpGEMM approach achieves higher throughput by using re-allocatable shared virtual memory. The source code of this work is available at https://github.com/bhSPARSE/Benchmark_SpGEMM_using_CSR
Optics is a promising platform in which to help realise the next generation of fast, parallel and energy-efficient computation. We demonstrate a reconfigurable free-space optical multiplier that is capable of over 3000 computations in parallel, using spatial light modulators with a pixel resolution of only 340x340. This enables vector-matrix multiplication and parallel vector-vector multiplication with vector size of up to 56. Our design is the first to simultaneously support optical implementation of reconfigurable, large-size and real-valued linear algebraic operations. Such an optical multiplier can serve as a building block of special-purpose optical processors such as optical neural networks and optical Ising machines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا