We investigate the lowest-mass quiescent galaxies known to exist in isolated environments ($mathrm{M^* = 10^{9.0-9.5} M_odot}$; 1.5 Mpc from a more massive galaxy). This population may represent the lowest stellar mass galaxies in which internal feedback quenches galaxy-wide star formation. We present Keck/ESI long-slit spectroscopy for 27 isolated galaxies in this regime: 20 quiescent galaxies and 7 star-forming galaxies. We measure emission line strengths as a function of radius and place galaxies on the Baldwin Phillips Terlevich (BPT) diagram. Remarkably, 16 of 20 quiescent galaxies in our sample host central AGN-like line ratios. Only 5 of these quiescent galaxies were identified as AGN-like in SDSS due to lower spatial resolution and signal-to-noise. We find that many of the quiescent galaxies in our sample have spatially-extended emission across the non-SF regions of BPT-space. When considering only the central 1$^{primeprime}$, we identify a tight relationship between distance from the BPT star-forming sequence and host galaxy stellar age as traced by $mathrm{D_n4000}$, such that older stellar ages are associated with larger distances from the star-forming locus. Our results suggest that the presence of hard ionizing radiation (AGN-like line ratios) is intrinsically tied to the quenching of what may be the lowest-mass self-quenched galaxies.