Do you want to publish a course? Click here

Galilean invariance restoration on the lattice

295   0   0.0 ( 0 )
 Added by Ning Li
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider the breaking of Galilean invariance due to different lattice cutoff effects in moving frames and a nonlocal smearing parameter which is used in the construction of the nuclear lattice interaction. The dispersion relation and neutron-proton scattering phase shifts are used to investigate the Galilean invariance breaking effects and ways to restore it. For $S$-wave channels, ${}^1S_0$ and ${}^3S_1$, we present the neutron-proton scattering phase shifts in moving frames calculated using both Luschers formula and the spherical wall method, as well as the dispersion relation. For the $P$ and $D$ waves, we present the neutron-proton scattering phase shifts in moving frames calculated using the spherical wall method. We find that the Galilean invariance breaking effects stemming from the lattice artifacts partially cancel those caused by the nonlocal smearing parameter. Due to this cancellation, the Galilean invariance breaking effect is small, and the Galilean invariance can be restored by introducing Galilean invariance restoration operators.



rate research

Read More

We explore the breaking of rotational symmetry on the lattice for bound state energies and practical methods for suppressing this breaking. We demonstrate the general problems associated with lattice discretization errors and finite-volume errors using an $alpha$ cluster model for $^8$Be and $^{12}$C. We consider the two and three $alpha$-particle systems and focus on the lowest states with non-zero angular momentum which split into multiplets corresponding to different irreducible representations of the cubic group. We examine the dependence of such splittings on the lattice spacing and box size. We find that lattice spacing errors are closely related to the commensurability of the lattice with the intrinsic length scales of the system. We also show that rotational symmetry breaking effects can be significantly reduced by using improved lattice actions, and that the physical energy levels are accurately reproduced by the weighted average of a given spin multiplets.
We study the breaking of rotational symmetry on the lattice for irreducible tensor operators and practical methods for suppressing this breaking. We illustrate the features of the general problem using an $alpha$ cluster model for $^{8}$Be. We focus on the lowest states with non-zero angular momentum and examine the matrix elements of multipole moment operators. We show that the physical reduced matrix element is well reproduced by averaging over all possible orientations of the quantum state, and this is expressed as a sum of matrix elements weighted by the corresponding Clebsch-Gordan coefficients. For our $alpha$ cluster model we find that the effects of rotational symmetry breaking can be largely eliminated for lattice spacings of $aleq 1.7$ fm, and we expect similar improvement for actual lattice Monte Carlo calculations.
It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments.
The adiabatic projection method is a general framework for studying scattering and reactions on the lattice. It provides a low-energy effective theory for clusters which becomes exact in the limit of large Euclidean projection time. Previous studies have used the adiabatic projection method to extract scattering phase shifts from finite periodic-box energy levels using Luschers method. In this paper we demonstrate that scattering observables can be computed directly from asymptotic cluster wave functions. For a variety of examples in one and three spatial dimensions, we extract elastic phase shifts from asymptotic cluster standing waves corresponding to spherical wall boundary conditions. We find that this approach of extracting scattering wave functions from the adiabatic Hamiltonian to be less sensitive to small stochastic and systematic errors as compared with using periodic-box energy levels.
A qualitative discussion on the range of the potentials as they result from the phenomenological meson-exchange picture and from lattice simulations by the HAL QCD Collaboration is presented. For the former pion- and/or $eta$-meson exchange are considered together with the scalar-isoscalar component of correlated $pipi /K bar K$ exchange. It is observed that the intuitive expectation for the behavior of the baryon-baryon potentials for large separations, associated with the exchange of one and/or two pions, does not always match with the potentials extracted from the lattice simulations. Only in cases where pion exchange provides the longest ranged contribution, like in the $Xi N$ system, a reasonable qualitative agreement between the phenomenological and the lattice QCD potentials is found for baryon-baryon separations of $r gtrsim 1$ fm. For the $Omega N$ and $OmegaOmega$ interactions where isospin conservation rules out one-pion exchange a large mismatch is observed, with the potentials by the HAL QCD Collaboration being much longer ranged and much stronger at large distances as compared to the phenomenological expectation. This casts some doubts on the applicability of using these potentials in few- or many-body systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا