No Arabic abstract
Context. The Sun is an active star and the source of the largest explosions in the solar system, such as flares and coronal mass ejections (CMEs). Flares and CMEs are powerful particle accelerators that can generate radio emission through various emission mechanisms. Aims. CMEs are often accompanied by Type IV radio bursts that are observed as continuum emission in dynamic spectra at decimetric and metric wavelengths, but their emission mechanism can vary from event to event. Here, we aim to determine the emission mechanism of a complex Type IV burst that accompanied the flare and CME on 22 September 2011. Methods. We used radio imaging from the Nanc{c}ay Radioheliograph, spectroscopic data from the e-Callisto network, ARTEMIS, Ondrejov, and Phoenix3 spectrometers combined with extreme-ultraviolet observations from NASAs Solar Dynamic Observatory to analyse the Type IV radio burst and determine its emission mechanism. Results. We show that the emission mechanism of the Type IV radio burst changes over time. We identified two components in the Type IV radio burst: an earlier stationary Type IV showing gyro-synchrotron behaviour, and a later moving Type IV burst covering the same frequency band. This second component has a coherent emission mechanism. Fundamental plasma emission and the electroncyclotron maser emission are further investigated as possible emission mechanisms for the generation of the moving Type IV burst. Conclusions. Type IV bursts are therefore complex radio bursts, where multiple emission mechanisms can contribute to the generation of the wide-band continuum observed in dynamic spectra. Imaging spectroscopy over a wide frequency band is necessary to determine the emission mechanisms of Type IV bursts that are observed in dynamic spectra.
Type III and type-III-like radio bursts are produced by energetic electron beams guided along coronal magnetic fields. As a variant of type III bursts, Type N bursts appear as the letter N in the radio dynamic spectrum and reveal a magnetic mirror effect in coronal loops. Here, we report a well-observed N-shaped burst consisting of three successive branches at metric wavelength with both fundamental and harmonic components and a high brightness temperature ($>$10$^9$ K). We verify the burst as a true type N burst generated by the same electron beam from three aspects of the data. First, durations of the three branches at a given frequency increase gradually, may due to the dispersion of the beam along its path. Second, the flare site, as the only possible source of non-thermal electrons, is near the western feet of large-scale closed loops. Third, the first branch and the following two branches are localized at different legs of the loops with opposite sense of polarization. We also find that the sense of polarization of the radio burst is in contradiction to the O-mode and there exists a fairly large time delay ($sim$3-5 s) between the fundamental and harmonic components. Possible explanations accounting for these observations are presented. Assuming the classical plasma emission mechanism, we can infer coronal parameters such as electron density and magnetic field near the radio source and make diagnostics on the magnetic mirror process.
Hot channel (HC) structure, observed in the high-temperature passbands of the AIA/SDO, is regarded as one candidate of coronal flux rope which is an essential element of solar eruptions. Here we present the first radio imaging study of an HC structure in the metric wavelength. The associated radio emission manifests as a moving type-IV (t-IVm) burst. We show that the radio sources co-move outwards with the HC, indicating that the t-IV emitting energetic electrons are efficiently trapped within the structure. The t-IV sources at different frequencies present no considerable spatial dispersion during the early stage of the event, while the sources spread gradually along the eruptive HC structure at later stage with significant spatial dispersion. The t-IV bursts are characterized by a relatively-high brightness temperature ($sim$ 10$^{7}$ $-$ 10$^{9}$ K), a moderate polarization, and a spectral shape that evolves considerably with time. This study demonstrates the possibility of imaging the eruptive HC structure at the metric wavelength and provides strong constraints on the t-IV emision mechanism, which, if understood, can be used to diagnose the essential parameters of the eruptive structure.
We study the non-thermal radio emission of the binary Cyg OB2 No. 8A, to see if it is variable and if that variability is locked to the orbital phase. We investigate if the synchrotron emission generated in the colliding-wind region of this binary can explain the observations and we verify that our proposed model is compatible with the X-ray data. We use both new and archive radio data from the Very Large Array (VLA) to construct a light curve as a function of orbital phase. We also present new X-ray data that allow us to improve the X-ray light curve. We develop a numerical model for the colliding-wind region and the synchrotron emission it generates. The model also includes free-free absorption and emission due to the stellar winds of both stars. In this way we construct artificial radio light curves and compare them with the observed one. The observed radio fluxes show phase-locked variability. Our model can explain this variability because the synchrotron emitting region is not completely hidden by the free-free absorption. In order to obtain a better agreement for the phases of minimum and maximum flux we need to use stellar wind parameters for the binary components which are somewhat different from typical values for single stars. We verify that the change in stellar parameters does not influence the interpretation of the X-ray light curve. Our model has trouble explaining the observed radio spectral index. This could indicate the presence of clumping or porosity in the stellar wind, which - through its influence on both the Razin effect and the free-free absorption - can considerably influence the spectral index. Non-thermal radio emitters could therefore open a valuable pathway to investigate the difficult issue of clumping in stellar winds.
We present a statistical study on the observed solar radio burst emission associated with the origin of in situ detected solar energetic particles. Several proton event catalogs in the period 1996$-$2016 are used. At the time of appearance of the particle origin (flare and coronal mass ejection) we identified radio burst signatures of types II, III and IV by inspecting dynamic radio spectral plots. The information from observatory reports is also accounted for during the analysis. The occurrence of solar radio burst signatures is evaluated within selected wavelength ranges during the solar cycle 23 and the ongoing 24. Finally, we present the burst occurrence trends with respect to the intensity of the proton events and the location of their solar origin.
Studies of solar radio bursts play an important role in understanding the dynamics and acceleration processes behind solar space weather events, and the influence of solar magnetic activity on solar system planets. Similar low-frequency bursts detected from active M-dwarfs are expected to probe their space weather environments and therefore the habitability of their planetary companions. Active M-dwarfs produce frequent, powerful flares which, along with radio emission, reveal conditions within their atmospheres. However, to date, only one candidate solar-like coherent radio burst has been identified from these stars, preventing robust observational constraints on their space weather environment. During simultaneous optical and radio monitoring of the nearby dM5.5e star Proxima Centauri, we detected a bright, long-duration optical flare, accompanied by a series of intense, coherent radio bursts. These detections include the first example of an interferometrically detected coherent stellar radio burst temporally coincident with a flare, strongly indicating a causal relationship between these transient events. The polarization and temporal structure of the trailing long-duration burst enable us to identify it as a type IV burst. This represents the most compelling detection of a solar-like radio burst from another star to date. Solar type IV bursts are strongly associated with space weather events such as coronal mass ejections and solar energetic particle events, suggesting that stellar type IV bursts may be used as a tracer of stellar coronal mass ejections. We discuss the implications of this event for the occurrence of coronal mass ejections from Proxima Cen and other active M-dwarfs.