No Arabic abstract
X-ray emission is an important indicator of stellar activity. In this paper, we study stellar X-ray activity using the XMM-Newton and LAMOST data for different types of stars. We provide a sample including 1259 X-ray emitting stars, of which 1090 have accurate stellar parameter estimations. Our sample size is much larger than those in previous works. We find a bimodal distribution of X-ray to optical flux ratio (log(fX/fV)) for G and K stars. We interpret that this bimodality is due to two subpopulations with different coronal heating rates. Furthermore, using the full widths at half maxima calculated from H{alpha} and Hb{eta} lines, we show that these stars in the inactive peaks have smaller rotational velocities. This is consistent with the magnetic dynamo theory that stars with low rotational velocities have low levels of stellar activity. We also examine the correlation between log(fX/fV) and luminosity of the excess emission in the H{alpha} line, and find a tight relation between the coronal and chromospheric activity indicators.
Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ~60% of stars compiled in the catalog of Petit et al. 2013). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss-rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower-Mdot B stars and flattens for the more luminous, higher-Mdot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g. higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest some temperature stratification to exist in massive stars magnetospheres.
Getman et al. (2021) reports the discovery, energetics, frequencies, and effects on environs of $>1000$ X-ray super-flares with X-ray energies $E_X sim 10^{34}-10^{38}$~erg from pre-main sequence (PMS) stars identified in the $Chandra$ MYStIX and SFiNCs surveys. Here we perform detailed plasma evolution modeling of $55$ bright MYStIX/SFiNCs super-flares from these events. They constitute a large sample of the most powerful stellar flares analyzed in a uniform fashion. They are compared with published X-ray super-flares from young stars in the Orion Nebula Cluster, older active stars, and the Sun. Several results emerge. First, the properties of PMS X-ray super-flares are independent of the presence or absence of protoplanetary disks inferred from infrared photometry, supporting the solar-type model of PMS flaring magnetic loops with both footpoints anchored in the stellar surface. Second, most PMS super-flares resemble solar long duration events (LDEs) that are associated with coronal mass ejections. Slow rise PMS super-flares are an interesting exception. Third, strong correlations of super-flare peak emission measure and plasma temperature with the stellar mass are similar to established correlations for the PMS X-ray emission composed of numerous smaller flares. Fourth, a new correlation of loop geometry is linked to stellar mass; more massive stars appear to have thicker flaring loops. Finally, the slope of a long-standing relationship between the X-ray luminosity and magnetic flux of various solar-stellar magnetic elements appears steeper in PMS super-flares than for solar events.
Although timing variations in close binary systems have been studied for a long time, their underlying causes are still unclear. A possible explanation is the so-called Applegate mechanism, where a strong, variable magnetic field can periodically change the gravitational quadrupole moment of a stellar component, thus causing observable period changes. One of the systems exhibiting such strong orbital variations is the RS CVn binary HR 1099, whose activity cycle has been studied by various authors via photospheric and chromospheric activity indicators, resulting in contradicting periods. We aim at independently determining the magnetic activity cycle of HR 1099 using archival X-ray data to allow for a comparison to orbital period variations. Archival X-ray data from 80 different observations of HR 1099 acquired with 12 different X-ray facilities and covering almost four decades were used to determine X-ray fluxes in the energy range of 2-10 keV via spectral fitting and flux conversion. Via the Lomb-Scargle periodogram we analyze the resulting long-term X-ray light curve to search for periodicities. We do not detect any statistically significant periodicities within the X-ray data. An analysis of optical data of HR 1099 shows that the derivation of such periods is strongly dependent on the time coverage of available data, since the observed optical variations strongly deviate from a pure sine wave. We argue that this offers an explanation as to why other authors derive such a wide range of activity cycle periods based on optical data. We conclude that our analysis constitutes the longest stellar X-ray activity light curve acquired to date, yet the still rather sparse sampling of the X-ray data, along with stochastic flaring activity, does not allow for the independent determination of an X-ray activity cycle.
Stars and their exoplanets evolve together. Depending on the physical characteristics of these systems, such as age, orbital distance and activity of the host stars, certain types of star-exoplanet interactions can dominate during given phases of the evolution. Identifying observable signatures of such interactions can provide additional avenues for characterising exoplanetary systems. Here, I review some recent works on star-planet interactions and discuss their observability at different wavelengths across the electromagnetic spectrum.
We study populations of soft and super-soft X-ray sources in nearby galaxies of various morphological types with the special emphasis on characterizing populations of stable nuclear burning accreting WDs. Analysing the content of Chandra archive we assembled a sample of nearby galaxies suitable for studying populations of super-soft X-ray sources. Our sample includes 4 spiral galaxies, 2 lenticular galaxies and 3 ellipticals with stellar mass exceeding $10^{10}$ $M_odot$ and X-ray sensitivity of the order of a ${rm few}times 10^{36}$ erg/s. We used combination of hardness ratio and median energy to pre-select X-ray sources with soft spectra, and temperature - X-ray luminosity diagram to identify super-soft X-ray sources - likely nuclear burning accreting white dwarfs. For spiral galaxies, there is a distinct and rare population of super-soft sources, largely detached from the rest of sources on the $kT_{bb}-L_X$ plane. The boundary between these sources and the much more numerous population of harder (but still soft) sources is consistent with the boundary of stable hydrogen burning on the white dwarf surface. Combined spectrum of soft sources located outside this boundary, shows clear emission lines of Mg and S, which equivalent width is similar to that in the combined spectrum of a large number of confirmed supernova remnants in M83. This confirms earlier suggestions that the vast majority of so called quasi-soft sources are supernova remnants. In early-type galaxies, populations of super-soft sources are about a factor of $approx 8$ less abundant, in broad agreement with the population synthesis calculations. Specific frequencies of super-soft sources are: (2.08$pm$0.46)$times10^{-10}$ M$_{odot}^{-1}$ in spiral galaxies and (2.47$pm$1.34)$times10^{-11}$ M$_{odot}^{-1}$ in lenticular and elliptical galaxies, with the ratio of the latter to the former of $0.12pm0.05$.