No Arabic abstract
Using a sample of 81 galactic, detached eclipsing binary stars we investigated the global zero-point shift of their parallaxes with the Gaia Data Release 2 (DR2) parallaxes. The stars in the sample lay in a distance range of 0.04-2 kpc from the Sun. The photometric parallaxes {pi}_Phot of the eclipsing binaries were determined by applying a number of empirical surface brightness - color (SBC) relations calibrated on optical-infrared colors. For each SBC relation we calculated the individual differences d{pi}_i = ({pi}_Gaia - {pi}_Phot)_i and then we calculated unweighted and weighted means. As the sample covers the whole sky we interpret the weighted means as the global shifts of the Gaia DR2 parallaxes with respect to our eclipsing binary sample. Depending on the choice of the SBC relation the shifts vary from -0.094 mas to -0.025 mas. The weighted mean of the zero-point shift from all colors and calibrations used is d{pi} = -0.054 +/- 0.024 mas. However, the SBC relations based on (B-K) and (V-K) colors, which are the least reddening dependent and have the lowest intrinsic dispersions, give a zero-point shift of d{pi} = -0.031 +/- 0.011 mas in full agreement with results obtained by Lindegren et al. and Arenou et al. Our result confirms the global shift of Gaia DR2 parallaxes of d{pi} = -0.029 mas reported by the Gaia team, but we do not confirm the larger zero-point shift reported by a number of follow-up papers.
The surface brightness -- colour relation (SBCR) is a basic tool in establishing precise and accurate distances within the Local Group. Detached eclipsing binary stars with accurately determined radii and trigonometric parallaxes allow for a calibration of the SBCRs with unprecedented accuracy. We analysed four nearby eclipsing binary stars containing late F-type main sequence components: AL Ari, AL Dor, FM Leo and BN Scl. We determined very precise spectroscopic orbits and combined them with high precision ground- and space-based photometry. We derived the astrophysical parameters of their components with mean errors of 0.1% for mass and 0.4% for radius. We combined those four systems with another 24 nearby eclipsing binaries with accurately known radii from the literature for which $Gaia$ EDR3 parallaxes are available, in order to derive the SBCRs. The resulting SBCRs cover stellar spectral types from B9 V to G7 V. For calibrations we used Johnson optical $B$ and $V$, $Gaia$ $G_{rm BP}$ and $G$ and 2MASS $JHK$ bands. The most precise relations are calibrated using the infrared $K$ band and allow to predict angular diameters of A-, F-, and G-type dwarf and subgiant stars with a precision of 1%.
Previous analyses of various standard candles observed by the Gaia satellite have reported statistically significant systematics in the parallaxes that have improved from $sim$250 $mu$as in the first data release (DR1) to 50--80 $mu$as in the second data release (DR2). Here we examine the parallaxes newly reported in the Gaia early third data release (EDR3) using the same sample of benchmark eclipsing binaries (EBs) we used to assess the DR1 and DR2 parallaxes. We find a mean offset of $-37pm20$ $mu$as (Gaia$-$EB), which decreases to $-15pm18$ $mu$as after applying the corrections recommended by the Gaia Mission team; global systematics in the Gaia parallaxes have clearly improved and are no longer statistically significant for the EB sample, which spans $5lesssim{G}lesssim12$ in brightness and 0.03--3 kpc in distance. We also find that the RUWE goodness-of-fit statistic reported in Gaia EDR3 is highly sensitive to unresolved companions (tertiaries in the case of our EB sample) as well as to photocenter motion of the binaries themselves. RUWE is nearly perfectly correlated ($r^2=0.82$) with photocenter motions down to $lesssim$0.1 mas, and surprisingly this correlation exists entirely within the nominal good RUWE range of 1.0--1.4. This suggests that RUWE values even slightly greater than 1.0 may signify unresolved binaries in Gaia, and that the RUWE value can serve as a quantitative predictor of the photocenter motion.
Several recent studies have shown that very wide binary stars can potentially provide an interesting test for modified-gravity theories which attempt to emulate dark matter; these systems should be almost Newtonian according to standard dark-matter theories, while the predictions for MOND-like theories are distinctly different, if the various observational issues can be overcome. Here we explore an observational application of the test from the recent GAIA DR2 data release: we select a large sample of $sim 24,000$ candidate wide binary stars with distance $< 200$ parsec and magnitudes $G < 16$ from GAIA DR2, and estimated component masses using a main-sequence mass-luminosity relation. We then compare the frequency distribution of pairwise relative projected velocity (relative to circular-orbit value) as a function of projected separation; these distributions show a clear peak at a value close to Newtonian expectations, along with a long `tail which extends to much larger velocity ratios; the `tail is considerably more numerous than in control samples constructed from DR2 with randomised positions, so its origin is unclear. Comparing the velocity histograms with simulated data, we conclude that MOND-like theories without an external field effect are strongly inconsistent with the observed data since they predict a peak-shift in clear disagreement with the data; testing MOND-like theories with an external field effect is not decisive at present, but has good prospects to become decisive in future with improved modelling or understanding of the high-velocity tail, and additional spectroscopic data.
We present time-series spectroscopy and photometry of Gaia DR2 6097540197980557440, a new deeply-eclipsing hot subdwarf B (sdB) + M dwarf (dM) binary. We discovered this object during the course of the Eclipsing Reflection Effect Binaries from Optical Surveys (EREBOS) project, which aims to find new eclipsing sdB+dM binaries (HW Vir systems) and increase the small sample of studied systems. In addition to the primary eclipse, which is in excess of $sim$5 magnitudes in the optical, the light curve also shows features typical for other HW Vir binaries such as a secondary eclipse and strong reflection effect from the irradiated, cool companion. The orbital period is 0.127037 d ($sim$3 hr), falling right at the peak of the orbital period distribution of known HW Vir systems. Analysis of our time-series spectroscopy yields a radial velocity semi-amplitude of $K_{rm sdB}=100.0pm2.0,{rm km,s}^{-1}$, which is amongst the fastest line-of-sight velocities found to date for an HW Vir binary. State-of-the-art atmospheric models that account for deviations from local thermodynamic equilibrium are used to determine the atmospheric parameters of the sdB. Although we cannot claim a unique light curve modeling solution, the best-fitting model has an sdB mass of $M_{rm sdB} = 0.47pm0.03,M_{odot}$ and a companion mass of $M_{rm dM} = 0.18pm0.01,M_{odot}$. The radius of the companion appears to be inflated relative to theoretical mass-radius relationships, consistent with other known HW Vir binaries. Additionally, the M dwarf is one of the most massive found to date amongst this type of binary.