Do you want to publish a course? Click here

Magnetogenesis from isocurvature initial conditions

111   0   0.0 ( 0 )
 Added by Pedro Carrilho
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The generation of magnetic fields is a natural consequence of the existence of vortical currents in the pre-recombination era. This has been confirmed in detail for the case of adiabatic initial conditions, using second-order Boltzmann solvers, but has not been fully explored in the presence of isocurvatures. In this work, we use a modified version of the second-order Boltzmann code SONG to compute the magnetic field generated by vortical currents for general initial conditions. A mild enhancement of the generated magnetic field is found in the presence of general isocurvature modes, when compared to the adiabatic case. A particularly interesting case is that of the compensated isocurvature mode, for which the enhancement increases by several orders of magnitude due to the observationally allowed large amplitude of those modes. We show in this particular case how these compensated modes can influence observables at second order, such as the magnetic fields, and produce interesting effects which may be used to constrain these modes in the future.



rate research

Read More

Non-linear effects in the early Universe generate non-zero bispectra of the cosmic microwave background (CMB) temperature and polarization, even in the absence of primordial non-Gaussianity. In this paper, we compute the contributions from isocurvature modes to the CMB bispectra using a modified version of the second-order Boltzmann solver SONG. We investigate the ability of current and future CMB experiments to constrain these modes with observations of the bispectrum. Our results show that the enhancement due to single isocurvature modes mixed with the adiabatic mode is negligible for the parameter ranges currently allowed by the most recent Planck results. However, we find that a large compensated isocurvature mode can produce a detectable bispectrum when its correlation with the adiabatic mode is appreciable. The non-observation of this contribution in searches for the lensing bispectrum from Planck allows us to place a new constraint on the relative amplitude of the correlated part of the compensated isocurvature mode of $f_{rm CIP}=1pm100$. We compute forecasts for future observations by COrE, SO, CMB-S4 and an ideal experiment and conclude that a dedicated search for the bispectrum from compensated modes could rule out a number of scenarios realised in the curvaton model. In addition, the CMB-S4 experiment could detect the most extreme of those scenarios ($f_{rm CIP}=16.5$) at 2 to 3-$sigma$ significance.
We study how to set the initial evolution of general cosmological fluctuations at second order, after neutrino decoupling. We compute approximate initial solutions for the transfer functions of all the relevant cosmological variables sourced by quadratic combinations of adiabatic and isocurvature modes. We perform these calculations in synchronous gauge, assuming a Universe described by the $Lambda$CDM model and composed of neutrinos, photons, baryons and dark matter. We highlight the importance of mixed modes, which are sourced by two different isocurvature or adiabatic modes and do not exist at the linear level. In particular, we investigate the so-called compensated isocurvature mode and find non-trivial initial evolution when it is mixed with the adiabatic mode, in contrast to the result at linear order and even at second order for the unmixed mode. Non-trivial evolution also arises when this compensated isocurvature is mixed with the neutrino density isocurvature mode. Regarding the neutrino velocity isocurvature mode, we show it unavoidably generates non-regular (decaying) modes at second order. Our results can be applied to second order Boltzmann solvers to calculate the effects of isocurvatures on non-linear observables.
We investigate in detail the question whether a non-vanishing cosmological constant is required by present-day cosmic microwave background and large scale structure data when general isocurvature initial conditions are allowed for. We also discuss differences between the usual Bayesian and the frequentist approaches in data analysis. We show that the COBE-normalized matter power spectrum is dominated by the adiabatic mode and therefore breaks the degeneracy between initial conditions which is present in the cosmic microwave background anisotropies. We find that in a flat universe the Bayesian analysis requires Omega_Lambda eq 0 to more than 3 sigma, while in the frequentist approach Omega_Lambda = 0 is still within 3 sigma for a value of h < 0.48. Both conclusions hold regardless of initial conditions.
In this work we compute the production of magnetic fields in models of axion inflation coupled to the hypercharge sector of the Standard Model through a Chern-Simons interaction term. We make the simplest choice of a quadratic inflationary potential and use lattice simulations to calculate the magnetic field strength, helicity and correlation length at the end of inflation. For small values of the axion-gauge field coupling strength the results agree with no-backreaction calculations and estimates found in the literature. For larger couplings the helicity of the magnetic field differs from the no-backreaction estimate and depends strongly on the comoving wavenumber. We estimate the post-inflationary evolution of the magnetic field based on known results for the evolution of helical and non-helical magnetic fields. The magnetic fields produced by axion inflation with large couplings to $U(1)_Y$ can reach $B_{rm eff} gtrsim 10^{-16}, {rm G}$, exhibiting a field strength $B_{rm phys} approx 10^{-13}, {rm G}$ and a correlation length $lambda_{rm phys}approx10, {rm pc}$. This result is insensitive to the exact value of the coupling, as long as the coupling is large enough to allow for instantaneous preheating. Depending on the assumptions for the physical processes that determine blazar properties, these fields can be found consistent with blazar observations based on the value of $B_{rm eff}$. Finally, the intensity of the magnetic field for large coupling can be enough to satisfy the requirements for a recently proposed baryogenesis mechanism, which utilizes the chiral anomaly of the Standard Model.
The angular momentum of dark matter haloes controls their spin magnitude and orientation, which in turn influences the galaxies therein. However, the process by which dark matter haloes acquire angular momentum is not fully understood; in particular, it is unclear whether angular momentum growth is stochastic. To address this question, we extend the genetic modification technique to allow control over the angular momentum of any region in the initial conditions. Using this technique to produce a sequence of modified simulations, we can then investigate whether changes to the angular momentum of a specified region in the evolved universe can be accurately predicted from changes in the initial conditions alone. We find that the angular momentum in regions with modified initial conditions can be predicted between 2 and 4 times more accurately than expected from applying tidal torque theory. This result is masked when analysing the angular momentum of haloes, because particles in the outskirts of haloes dominate the angular momentum budget. We conclude that the angular momentum of Lagrangian patches is highly predictable from the initial conditions, with apparent chaotic behaviour being driven by stochastic changes to the arbitrary boundary defining the halo.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا