Do you want to publish a course? Click here

Nonintrinsic origin of the magnetic-field-induced metal-insulator and electronic phase transitions in graphite

204   0   0.0 ( 0 )
 Added by Pablo D. Esquinazi
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A detailed magnetoresistance study of bulk and microflake samples of highly oriented pyrolytic graphite with a thickness of 25 $mu$m to 23~nm reveals that the usually observed field-induced metal-insulator and electronic phase transitions vanish in thinner samples. The observed suppression is accompanied by orders of magnitude decrease of the magnetoresistance and of the amplitude of the Shubnikov-de-Haas oscillations. The overall behavior is related to the decrease in the quantity of two-dimensional interfaces between crystalline regions of the same and different stacking orders present in graphite samples. Our results indicate that these field-induced transitions are not intrinsic to the ideal graphite structure and, therefore, a relevant portion of the published interpretations should be reconsidered.



rate research

Read More

Different instabilities have been speculated for a three-dimensional electron gas confined to its lowest Landau level. The phase transition induced in graphite by a strong magnetic field, and believed to be a Charge Density Wave (CDW), is the only experimentally established case of such instabilities. Studying the magnetoresistance in graphite for the first time up to 80 T, we find that the magnetic field induces two successive phase transitions, consisting of two distinct ordered states each restricted to a finite field window. In both states, an energy gap opens up in the out-of-plane conductivity and coexists with an unexpected in-plane metallicity for a fully gap bulk system. Such peculiar metallicity may arise as a consequence of edge-state transport expected to develop in presence of a bulk gap.
175 - Yin Shi , Long-Qing Chen 2020
From thermodynamic analysis we demonstrate that during metal-insulator transitions in pure matters, a nonequilibrium homogeneous state may be unstable against charge density modulations with certain wavelengths, and thus evolves to the equilibrium phase through transient electronic phase separation. This phase instability occurs as two inequalities between the first and the second derivatives of the free energy with respect to the order parameter are fulfilled. The dominant wavelength of the modulated phase is also derived. The computer simulation further confirms the theoretical derivation. Employing the pre-established phase-field model of VO$_2$, we show that this transient electronic phase separation may take place in VO$_2$ upon photoexcitation.
This article reviews recent results of magnetotransport and magnetization measurements performed on highly oriented pyrolitic graphite (HOPG) and single crystalline Kish graphite samples. Both metal-insulator and insulator-metal transitions driven by magnetic field applied perpendicular to the basal planes of graphite were found and discussed in the light of relevant theories. The results provide evidence for the existence of localized superconducting domains in HOPG even at room temperature, as well as an interplay between superconducting and ferromagnetic correlations. We also present experimental evidence for the superconductivity occurrence in graphite-sulfur composites.
Applied magnetic field induces metal - insulator and re-entrant insulator-metal transitions in both graphite and rhombohedral bismuth. The corresponding transition boundaries plotted on the magnetic field - temperature (B - T) plane nearly coincide for these semimetals and can be best described by power laws T ~ (B - B_c)^k, where B_c is a critical field at T = 0 and k = 0.45 +/- 0.05. We show that insulator-metal-insulator (I-M-I) transformations take place in the Landau level quantization regime and illustrate how the IMT in quasi-3D graphite transforms into a cascade of I-M-I transitions, related to the quantum Hall effect in quasi-2D graphite samples. We discuss the possible coupling of superconducting and excitonic correlations with the observed phenomena, as well as the signatures of quantum phase transitions associated with the M-I and I-M transformations.
In the immediate vicinity of the critical temperature (T$_c$) of a phase transition, there are fluctuations of the order parameter, which reside beyond the mean-field approximation. Such critical fluctuations usually occur in a very narrow temperature window in contrast to Gaussian fluctuations. Here, we report on a study of specific heat in graphite subject to high magnetic field when all carriers are confined in the lowest Landau levels. The observation of a BCS-like specific heat jump in both temperature and field sweeps establishes that the phase transition discovered decades ago in graphite is of the second-order. The jump is preceded by a steady field-induced enhancement of the electronic specific heat. A modest (20 percent) reduction in the amplitude of the magnetic field (from 33 T to 27 T) leads to a threefold decrease of T$_c$ and a drastic widening of the specific heat anomaly, which acquires a tail spreading to two times T$_c$. We argue that the steady departure from the mean-field BCS behavior is the consequence of an exceptionally large Ginzburg number in this dilute metal, which grows steadily as the field lowers. Our fit of the critical fluctuations indicates that they belong to the $3DXY$ universality class, similar to the case of $^4$He superfluid transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا