Do you want to publish a course? Click here

Impurity states and Localization in Bilayer Graphene: the Low Impurity Concentration Regime

60   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the problem of non-magnetic impurities adsorbed on bilayer graphene in the diluted regime. We analyze the impurity spectral densities for various concentrations and gate fields. We also analyze the effect of the adsorbate on the local density of states (LDOS) of the different C atoms in the structure and present some evidence of strong localization for the electronic states with energies close to the Dirac point.

rate research

Read More

Defects in graphene are of crucial importance for its electronic and magnetic properties. Here impurity effects on the electronic structure of surrounding carbon atoms are considered and the distribution of the local densities of states (LDOS) is calculated. As the full range from near field to the asymptotic regime is covered, our results are directly accessible by scanning tunnelling microscopy (STM). We also include exchange scattering at magnetic impurities and eludicate how strongly spin polarized impurity states arise.
We have examined the impact of charged impurity scattering on charge carrier transport in bilayer graphene (BLG) by deposition of potassium in ultra-high vacuum at low temperature. Charged impurity scattering gives a conductivity which is supra-linear in carrier density, with a magnitude similar to single-layer graphene for the measured range of carrier densities of 2-4 x 10^12 cm^-2. Upon addition of charged impurities of concentration n_imp, the minimum conductivity Sigma_min decreases proportional to n_imp^-1/2, while the electron and hole puddle carrier density increases proportional to n_imp^1/2. These results for the intentional deposition of potassium on BLG are in good agreement with theoretical predictions for charged impurity scattering. However, our results also suggest that charged impurity scattering alone cannot explain the observed transport properties of pristine BLG on SiO2 before potassium doping.
We theoretically calculate the impurity-scattering induced resistivity of twisted bilayer graphene at low twist angles where the graphene Fermi velocity is strongly suppressed. We consider, as a function of carrier density, twist angle, and temperature, both long-ranged Coulomb scattering and short-ranged defect scattering within a Boltzmann theory relaxation time approach. For experimentally relevant disorder, impurity scattering contributes a resistivity comparable to (much larger than) the phonon scattering contribution at high (low) temperatures. Decreasing twist angle leads to larger resistivity, and in general, the resistivity increases (decreases) with increasing temperature (carrier density). Inclusion of the van Hove singularity in the theory leads to a strong increase in the resistivity at higher densities, where the chemical potential is close to a van Hove singularity, leading to an apparent density-dependent plateau type structure in the resistivity, which has been observed in recent transport experiments. We also show that the Matthissens rule is strongly violated in twisted bilayer graphene at low twist angles.
We study the low energy edge states of bilayer graphene in a strong perpendicular magnetic field. Several possible simple boundaries geometries related to zigzag edges are considered. Tight-binding calculations reveal three types of edge state behaviors: weakly, strongly, and non-dispersive edge states. These three behaviors may all be understood within a continuum model, and related by non-linear transformations to the spectra of quantum Hall edge--states in a conventional two-dimensional electron system. In all cases, the edge states closest to zero energy include a hole-like edge state of one valley and a particle-like state of the other on the same edge, which may or may not cross depending on the boundary condition. Edge states with the same spin generically have anticrossings that complicate the spectra, but which may be understood within degenerate perturbation theory. The results demonstrate that the number of edge states crossing the Fermi level in clean, undoped bilayer graphene depends BOTH on boundary conditions and the energies of the bulk states.
Both transport $tau_{tr}$ and elastic scattering times $tau_{e}$ are experimentally determined from the carrier density dependence of the magnetoconductance of monolayer and bilayer graphene. Both times and their dependences in carrier density are found to be very different in the monolayer and the bilayer. However their ratio $tau_{tr}/tau_{e} $is found to be of the order of $1.5 $ in both systems and independent of the carrier density. These measurements give insight on the nature (neutral or charged) and spatial extent of the scattering centers. Comparison with theoretical predictions yields that the main scattering mechanism in our graphene samples could be due to strong scatterers of short range, inducing resonant scattering, a likely candidate being vacancies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا