Do you want to publish a course? Click here

Non-local signatures of the chiral magnetic effect in Dirac semimetal Bi$_{0.97}$Sb$_{0.03}$

59   0   0.0 ( 0 )
 Added by Daan Harm Wielens
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The field of topological materials science has recently been focussing on three-dimensional Dirac semimetals, which exhibit robust Dirac phases in the bulk. However, the absence of characteristic surface states in accidental Dirac semimetals (DSM) makes it difficult to experimentally verify claims about the topological nature using commonly used surface-sensitive techniques. The chiral magnetic effect (CME), which originates from the Weyl nodes, causes an $textbf{E}cdottextbf{B}$-dependent chiral charge polarization, which manifests itself as negative magnetoresistance. We exploit the extended lifetime of the chirally polarized charge and study the CME through both local and non-local measurements in Hall bar structures fabricated from single crystalline flakes of the DSM Bi$_{0.97}$Sb$_{0.03}$. From the non-local measurement results we find a chiral charge relaxation time which is over one order of magnitude larger than the Drude transport lifetime, underlining the topological nature of Bi$_{0.97}$Sb$_{0.03}$.



rate research

Read More

We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a function of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasi-particles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasi-linear inter-band contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies the optical response is governed by transitions between a previously unobserved four-fold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.
Dirac states hosted by Sb/Bi square nets are known to exist in the layered antiferromagnetic AMnX$_2$ (A = Ca/Sr/Ba/Eu/Yb, X=Sb/Bi) material family the space group to be P4/nmm or I4/mmm. In this paper, we present a comprehensive study of quantum transport behaviors, angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations on SrZnSb2, a nonmagnetic analogue to AMnX2, which crystallizes in the pnma space group with distorted square nets. From the quantum oscillation measurements up to 35 T, three major frequencies including F$_1$ = 103 T, F$_2$ = 127 T and F$_3$ = 160 T, are identified. The effective masses of the quasiparticles associated with these frequencies are extracted, namely, m*$_1$ = 0.1 m$_e$, m*$_2$ = 0.1 m$_e$ and m*$_3$ = 0.09m$_e$, where m$_e$ is the free electron mass. From the three-band Lifshitz-Kosevich fit, the Berry phases accumulated along the cyclotron orbit of the quasiparticles are 0.06$pi$, 1.2$pi$ and 0.74$pi$ for F$_1$, F$_2$ and F$_3$, respectively. Combined with the ARPES data and the first-principles calculations, we reveal that F2 and F3 are associated with the two nontrivial Fermi pockets at the Brillouin zone edge while F1 is associated with the trivial Fermi pocket at the zone center. In addition, the first-principles calculations further suggest the existence of Dirac nodal line in the band structure of SrZnSb$_2$.
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the field strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.
The linear band crossings of 3D Dirac and Weyl semimetals are characterized by a charge chirality, the parallel or anti-parallel locking of electron spin to its momentum. Such materials are believed to exhibit a ${bf E} cdot {bf B}$ chiral magnetic effect that is associated with the near conservation of chiral charge. Here, we use magneto-terahertz spectroscopy to study epitaxial Cd$_3$As$_2$ films and extract their conductivities $sigma(omega)$ as a function of ${bf E} cdot {bf B}$. As field is applied, we observe a remarkably sharp Drude response that rises out of the broader background. Its appearance is a definitive signature of a new transport channel and consistent with the chiral response, with its spectral weight a measure of the net chiral charge and width a measure of the scattering rate between chiral species. The field independence of the chiral relaxation establishes that it is set by the approximate conservation of the isospin that labels the crystalline point-group representations.
76 - J.Y. Liu , J. Yu , J.L. Ning 2019
Spin-valley locking in the band structure of monolayers of MoS$_2$ and other group-VI dichalcogenides has attracted enormous interest, since it offers potential for valleytronic and optoelectronic applications. Such an exotic electronic state has sparsely been seen in bulk materials. Here, we report spin-valley locking in a bulk Dirac semimetal BaMnSb$_2$. We find valley and spin are inherently coupled for both valence and conduction bands in this material. This is revealed by comprehensive studies using first principle calculations, tight-binding and effective model analyses, angle-resolved photoemission spectroscopy and quantum transport measurements. Moreover, this material also exhibits a stacked quantum Hall effect. The spin-valley degeneracy extracted from the plateau height of quantized Hall resistivity is close to 2. This result, together with the observed Landau level spin splitting, further confirms the spin-valley locking picture. In the extreme quantum limit, we have also observed a two-dimensional chiral metal at the side surface, which represents a novel topological quantum liquid. These findings establish BaMnSb$_2$ as a rare platform for exploring coupled spin and valley physics in bulk single crystals and accessing 3D interacting topological states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا