No Arabic abstract
A typical audio signal processing pipeline includes multiple disjoint analysis stages, including calculation of a time-frequency representation followed by spectrogram-based feature analysis. We show how time-frequency analysis and nonnegative matrix factorisation can be jointly formulated as a spectral mixture Gaussian process model with nonstationary priors over the amplitude variance parameters. Further, we formulate this nonlinear models state space representation, making it amenable to infinite-horizon Gaussian process regression with approximate inference via expectation propagation, which scales linearly in the number of time steps and quadratically in the state dimensionality. By doing so, we are able to process audio signals with hundreds of thousands of data points. We demonstrate, on various tasks with empirical data, how this inference scheme outperforms more standard techniques that rely on extended Kalman filtering.
Speech enhancement model is used to map a noisy speech to a clean speech. In the training stage, an objective function is often adopted to optimize the model parameters. However, in most studies, there is an inconsistency between the model optimization criterion and the evaluation criterion on the enhanced speech. For example, in measuring speech intelligibility, most of the evaluation metric is based on a short-time objective intelligibility (STOI) measure, while the frame based minimum mean square error (MMSE) between estimated and clean speech is widely used in optimizing the model. Due to the inconsistency, there is no guarantee that the trained model can provide optimal performance in applications. In this study, we propose an end-to-end utterance-based speech enhancement framework using fully convolutional neural networks (FCN) to reduce the gap between the model optimization and evaluation criterion. Because of the utterance-based optimization, temporal correlation information of long speech segments, or even at the entire utterance level, can be considered when perception-based objective functions are used for the direct optimization. As an example, we implement the proposed FCN enhancement framework to optimize the STOI measure. Experimental results show that the STOI of test speech is better than conventional MMSE-optimized speech due to the consistency between the training and evaluation target. Moreover, by integrating the STOI in model optimization, the intelligibility of human subjects and automatic speech recognition (ASR) system on the enhanced speech is also substantially improved compared to those generated by the MMSE criterion.
In this paper, we present an end-to-end training framework for building state-of-the-art end-to-end speech recognition systems. Our training system utilizes a cluster of Central Processing Units(CPUs) and Graphics Processing Units (GPUs). The entire data reading, large scale data augmentation, neural network parameter updates are all performed on-the-fly. We use vocal tract length perturbation [1] and an acoustic simulator [2] for data augmentation. The processed features and labels are sent to the GPU cluster. The Horovod allreduce approach is employed to train neural network parameters. We evaluated the effectiveness of our system on the standard Librispeech corpus [3] and the 10,000-hr anonymized Bixby English dataset. Our end-to-end speech recognition system built using this training infrastructure showed a 2.44 % WER on test-clean of the LibriSpeech test set after applying shallow fusion with a Transformer language model (LM). For the proprietary English Bixby open domain test set, we obtained a WER of 7.92 % using a Bidirectional Full Attention (BFA) end-to-end model after applying shallow fusion with an RNN-LM. When the monotonic chunckwise attention (MoCha) based approach is employed for streaming speech recognition, we obtained a WER of 9.95 % on the same Bixby open domain test set.
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from another person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.
We present an end-to-end method for transforming audio from one style to another. For the case of speech, by conditioning on speaker identities, we can train a single model to transform words spoken by multiple people into multiple target voices. For the case of music, we can specify musical instruments and achieve the same result. Architecturally, our method is a fully-differentiable sequence-to-sequence model based on convolutional and hierarchical recurrent neural networks. It is designed to capture long-term acoustic dependencies, requires minimal post-processing, and produces realistic audio transforms. Ablation studies confirm that our model can separate speaker and instrument properties from acoustic content at different receptive fields. Empirically, our method achieves competitive performance on community-standard datasets.
In this work, we extend ClariNet (Ping et al., 2019), a fully end-to-end speech synthesis model (i.e., text-to-wave), to generate high-fidelity speech from multiple speakers. To model the unique characteristic of different voices, low dimensional trainable speaker embeddings are shared across each component of ClariNet and trained together with the rest of the model. We demonstrate that the multi-speaker ClariNet outperforms state-of-the-art systems in terms of naturalness, because the whole model is jointly optimized in an end-to-end manner.