On Dirac operators in $mathbb{R}^3$ with electrostatic and Lorentz scalar $delta$-shell interactions


Abstract in English

In this article Dirac operators $A_{eta, tau}$ coupled with combinations of electrostatic and Lorentz scalar $delta$-shell interactions of constant strength $eta$ and $tau$, respectively, supported on compact surfaces $Sigma subset mathbb{R}^3$ are studied. In the rigorous definition of these operators the $delta$-potentials are modelled by coupling conditions at $Sigma$. In the proof of the self-adjointness of $A_{eta, tau}$ a Krein-type resolvent formula and a Birman-Schwinger principle are obtained. With their help a detailed study of the qualitative spectral properties of $A_{eta, tau}$ is possible. In particular, the essential spectrum of $A_{eta, tau}$ is determined, it is shown that at most finitely many discrete eigenvalues can appear, and several symmetry relations in the point spectrum are obtained. Moreover, the nonrelativistic limit of $A_{eta, tau}$ is computed and it is discussed that for some special interaction strengths $A_{eta, tau}$ is decoupled to two operators acting in the domains with the common boundary $Sigma$.

Download