Do you want to publish a course? Click here

Augmenting Model Robustness with Transformation-Invariant Attacks

72   0   0.0 ( 0 )
 Added by Yi Ren
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The vulnerability of neural networks under adversarial attacks has raised serious concerns and motivated extensive research. It has been shown that both neural networks and adversarial attacks against them can be sensitive to input transformations such as linear translation and rotation, and that human vision, which is robust against adversarial attacks, is invariant to natural input transformations. Based on these, this paper tests the hypothesis that model robustness can be further improved when it is adversarially trained against transformed attacks and transformation-invariant attacks. Experiments on MNIST, CIFAR-10, and restricted ImageNet show that while transformations of attacks alone do not affect robustness, transformation-invariant attacks can improve model robustness by 2.5% on MNIST, 3.7% on CIFAR-10, and 1.1% on restricted ImageNet. We discuss the intuition behind this phenomenon.



rate research

Read More

Adversarial examples can deceive a deep neural network (DNN) by significantly altering its response with imperceptible perturbations, which poses new potential vulnerabilities as the growing ubiquity of DNNs. However, most of the existing adversarial examples cannot maintain the malicious functionality if we apply an affine transformation on the resultant examples, which is an important measurement to the robustness of adversarial attacks for the practical risks. To address this issue, we propose an affine-invariant adversarial attack which can consistently construct adversarial examples robust over a distribution of affine transformation. To further improve the efficiency, we propose to disentangle the affine transformation into rotations, translations, magnifications, and reformulate the transformation in polar space. Afterwards, we construct an affine-invariant gradient estimator by convolving the gradient at the original image with derived kernels, which can be integrated with any gradient-based attack methods. Extensive experiments on the ImageNet demonstrate that our method can consistently produce more robust adversarial examples under significant affine transformations, and as a byproduct, improve the transferability of adversarial examples compared with the alternative state-of-the-art methods.
We present ASIST, a technique for transforming point clouds by replacing objects with their semantically equivalent counterparts. Transformations of this kind have applications in virtual reality, repair of fused scans, and robotics. ASIST is based on a unified formulation of semantic labeling and object replacement; both result from minimizing a single objective. We present numerical tools for the efficient solution of this optimization problem. The method is experimentally assessed on new datasets of both synthetic and real point clouds, and is additionally compared to two recent works on object replacement on data from the corresponding papers.
To remove the effects of adversarial perturbations, preprocessing defenses such as pixel discretization are appealing due to their simplicity but have so far been shown to be ineffective except on simple datasets such as MNIST, leading to the belief that pixel discretization approaches are doomed to failure as a defense technique. This paper revisits the pixel discretization approaches. We hypothesize that the reason why existing approaches have failed is that they have used a fixed codebook for the entire dataset. In particular, we find that can lead to situations where images become more susceptible to adversarial perturbations and also suffer significant loss of accuracy after discretization. We propose a novel image preprocessing technique called Essential Features that uses an adaptive codebook that is based on per-image content and threat model. Essential Features adaptively selects a separable set of color clusters for each image to reduce the color space while preserving the pertinent features of the original image, maximizing both separability and representation of colors. Additionally, to limit the adversarys ability to influence the chosen color clusters, Essential Features takes advantage of spatial correlation with an adaptive blur that moves pixels closer to their original value without destroying original edge information. We design several adaptive attacks and find that our approach is more robust than previous baselines on $L_infty$ and $L_2$ bounded attacks for several challenging datasets including CIFAR-10, GTSRB, RESISC45, and ImageNet.
Attention-based networks have achieved state-of-the-art performance in many computer vision tasks, such as image classification. Unlike Convolutional Neural Network (CNN), the major part of the vanilla Vision Transformer (ViT) is the attention block that brings the power of mimicking the global context of the input image. This power is data hunger and hence, the larger the training data the better the performance. To overcome this limitation, many ViT-based networks, or hybrid-ViT, have been proposed to include local context during the training. The robustness of ViTs and its variants against adversarial attacks has not been widely invested in the literature. Some robustness attributes were revealed in few previous works and hence, more insight robustness attributes are yet unrevealed. This work studies the robustness of ViT variants 1) against different $L_p$-based adversarial attacks in comparison with CNNs and 2) under Adversarial Examples (AEs) after applying preprocessing defense methods. To that end, we run a set of experiments on 1000 images from ImageNet-1k and then provide an analysis that reveals that vanilla ViT or hybrid-ViT are more robust than CNNs. For instance, we found that 1) Vanilla ViTs or hybrid-ViTs are more robust than CNNs under $L_0$, $L_1$, $L_2$, $L_infty$-based, and Color Channel Perturbations (CCP) attacks. 2) Vanilla ViTs are not responding to preprocessing defenses that mainly reduce the high frequency components while, hybrid-ViTs are more responsive to such defense. 3) CCP can be used as a preprocessing defense and larger ViT variants are found to be more responsive than other models. Furthermore, feature maps, attention maps, and Grad-CAM visualization jointly with image quality measures, and perturbations energy spectrum are provided for an insight understanding of attention-based models.
121 - Yapeng Tian , Chenliang Xu 2021
In this paper, we propose to make a systematic study on machines multisensory perception under attacks. We use the audio-visual event recognition task against multimodal adversarial attacks as a proxy to investigate the robustness of audio-visual learning. We attack audio, visual, and both modalities to explore whether audio-visual integration still strengthens perception and how different fusion mechanisms affect the robustness of audio-visual models. For interpreting the multimodal interactions under attacks, we learn a weakly-supervised sound source visual localization model to localize sounding regions in videos. To mitigate multimodal attacks, we propose an audio-visual defense approach based on an audio-visual dissimilarity constraint and external feature memory banks. Extensive experiments demonstrate that audio-visual models are susceptible to multimodal adversarial attacks; audio-visual integration could decrease the model robustness rather than strengthen under multimodal attacks; even a weakly-supervised sound source visual localization model can be successfully fooled; our defense method can improve the invulnerability of audio-visual networks without significantly sacrificing clean model performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا