Do you want to publish a course? Click here

Dissipative phonon Fock state production in strong nonlinear optomechanics

66   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We put forward a deterministic dissipative protocol to prepare phonon Fock states in nonlinear quantum optomechanical devices. The system is composed of a mechanical mode interacting with an optical field via radiation pressure, whereas the light mode is laser-driven in the resolved blue-sideband regime. To keep our results tractable, we have switched to an interaction picture in a displaced basis, where the effective Hamiltonian exhibits the selective photon-phonon interaction explicitly. After proper parameter adjustment and similarly to cavity-cooling schemes, the quantum evolution allows steering the mechanical degree of freedom to the desired Fock state by directing the optical excitations dynamically towards the target phonon state. The numerical results, including decoherence on both the mechanical and the optical degrees of freedom, show to be quite robust in the good- and bad-cavity regimes with fidelities exceeding $95%$. Lastly, characterization of the achieved nonclassicality, as well as the limitations and feasibility of our protocol under experimental parameters, are also analyzed.



rate research

Read More

In this letter we present a protocol to engineer interactions confined to subspaces of the Fock space in trapped ions: we show how to engineer upper-, lower-bounded and sliced Jaynes-Cummings (JC) and anti-Jaynes-Cummings (AJC) Hamiltonians. The upper-bounded (lower-bounded) interaction acting upon Fock subspaces ranging from $leftvert 0rightrangle $ to $leftvert Mrightrangle $ ($leftvert Nrightrangle $ to$ infty$), and the sliced one confined to Fock subspace ranging from $leftvert Mrightrangle $ to $leftvert Nrightrangle $, whatever $M<N$. Whereas the upper-bounded JC or AJC interactions is shown to drive any initial state to a steady Fock state $leftvert Nrightrangle $, the sliced one is shown to produce steady superpositions of Fock states confined to the sliced subspace $left{ leftvert Nrightrangle text{,}leftvert N+1rightrangle right} $.
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely this fundamental principle. Surface acoustic waves provide a versatile interconnect on a chip and, thus, enable the optomechanical control of remote systems. Here, we report on the coherent nonlinear three-wave mixing between the coherent fields of two radio frequency surface acoustic waves and optical laser photons via the dipole transition of a single quantum dot exciton. In the resolved sideband regime, we demonstrate fundamental acoustic analogues of sum and difference frequency generation between the two SAWs and employ phase matching to deterministically enhance or suppress individual sidebands. This bi-directional transfer between the acoustic and optical domains is described by theory which fully takes into account direct and virtual multi-phonon processes. Finally, we show that the precision of the wave mixing is limited by the frequency accuracy of modern radio frequency electronics.
We exploit local quantum estimation theory to investigate the measurement of linear and quadratic coupling strengths in a driven-dissipative optomechanical system. For experimentally realistic values of the model parameters, we find that the linear coupling strength is considerably easier to estimate than the quadratic one. Our analysis also reveals that the majority of information about these parameters is encoded in the reduced state of the mechanical element, and that the best estimation strategy for both coupling parameters is well approximated by a direct measurement of the mechanical position quadrature. Interestingly, we also show that temperature does not always have a detrimental effect on the estimation precision, and that the effects of temperature are more pronounced in the case of the quadratic coupling parameter.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
Superradiance in an ensemble of atoms leads to the collective enhancement of radiation in a particular mode shared by the atoms in their spontaneous decay from an excited state. The quantum aspects of this phenomenon are highlighted when such collective enhancement is observed in the emission of a single quantum of light. Here we report a further step in exploring experimentally the nonclassical features of superradiance by implementing the process not only with single excitations, but also in a two-excitations state. Particularly we measure and theoretically model the wave-packets corresponding to superradiance in both the single-photon and two-photons regimes. Such progress opens the way to the study and future control of the interaction of nonclassical light modes with collective quantum memories at higher photon numbers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا