Do you want to publish a course? Click here

The First NuSTAR Observation of 4U 1538-522: Updated Orbital Ephemeris and A Strengthened Case for an Evolving Cyclotron Line Energy

116   0   0.0 ( 0 )
 Added by Paul Hemphill
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have performed a comprehensive spectral and timing analysis of the first NuSTAR observation of the high-mass X-ray binary 4U 1538-522. The observation covers the X-ray eclipse of the source, plus the eclipse ingress and egress. We use the new measurement of the mid-eclipse time to update the orbital parameters of the system and find marginally-significant evolution in the orbital period, with $dot{P}_{rm orb}/P_{rm orb} = left(-0.95 pm 0.37right) times 10^{-6}$ yr$^{-1}$. The cyclotron line energy is found approximately 1.2 keV higher than RXTE measurements from 1997--2003, in line with the increased energy observed by Suzaku in 2012 and strengthening the case for secular evolution of 4U 1538-522s CRSF. We additionally characterize the behavior of the iron fluorescence and emission lines and line-of-sight absorption as the source moves into and out of eclipse.



rate research

Read More

We have performed a full time- and luminosity-resolved spectral analysis of the high-mass X-ray binary 4U 1538-522 using the available RXTE, INTEGRAL, and Suzaku data, examining both phase-averaged and pulse-phase-constrained datasets and focusing on the behavior of the cyclotron resonance scattering feature (CRSF). No statistically significant trend between the energy of the CRSF and luminosity is observed in the combined dataset. However, the CRSF energy appears to have increased by ~1.5 keV in the ~8.5 years between the RXTE and Suzaku measurements, with Monte Carlo simulations finding the Suzaku measurement 4.6$sigma$ above the RXTE points. Interestingly, the increased Suzaku CRSF energy is much more significant and robust in the pulse-phase-constrained spectra from the peak of the main pulse, suggesting a change that is limited to a single magnetic pole. The 7 years of RXTE measurements do not show any strongly-significant evolution with time on their own. We discuss the significance of the CRSFs behavior with respect to luminosity and time in the context of historical observations of this source as well as recent observational and theoretical work concerning the neutron star accretion column, and suggest some mechanisms by which the observed change over time could occur.
We present results from the first Suzaku observation of the high-mass X-ray binary 4U 1538-522. The broad-band spectral coverage of Suzaku allows for a detailed spectral analysis, characterizing the cyclotron resonance scattering feature at $23.0 pm 0.4$ keV and the iron K$alpha$ line at $6.426 pm 0.008$ keV, as well as placing limits on the strengths of the iron K$beta$ line and the iron K edge. We track the evolution of the spectral parameters both in time and in luminosity, notably finding a significant positive correlation between cyclotron line energy and luminosity. A dip and spike in the lightcurve is shown to be associated with an order-of-magnitude increase in column density along the line of sight, as well as significant variation in the underlying continuum, implying the accretion of a overdense region of a clumpy stellar wind. We also present a phase-resolved analysis, with most spectral parameters of interest showing significant variation with phase. Notably, both the cyclotron line energy and the iron K$alpha$ line intensity vary significantly with phase, with the iron line intensity significantly out-of-phase with the pulse profile. We discuss the implications of these findings in the context of recent work in the areas of accretion column physics and cyclotron resonance scattering feature formation.
We present a spectral and timing analysis of INTEGRAL observations of two high mass X-ray binaries, 4U 1538-522 and 4U 1907+09. Our timing measurements for 4U 1538-522 find the pulse period to have exhibited a spin-up trend until approximately 2009, after which there is evidence for a torque reversal, with the source beginning to spin down to the most recently-measured period of 525.407 +/- 0.001 s. The most recent INTEGRAL observations of 4U 1907+09 are not found to yield statistically significant pulse periods due to the significantly lower flux from the source compared to 4U 1538-522. A spectral model consisting of a power-law continuum with an exponential cutoff and modified by two cyclotron resonance scattering features is found to fit both sources well, with the cyclotron scattering features detected at ~22 and ~49 keV for 4U 1538-522 and at ~18 and ~36 keV in 4U 1907+09. The spectral parameters of 4U 1538-522 are generally not found to vary significantly with flux, and there is little to no variation across the torque reversal. Examining our results in conjunction with previous work, we find no evidence for a correlation between cyclotron line energy and luminosity for 4U 1538-522. 4U 1907+09 shows evidence for a positive correlation between cyclotron line energy and luminosity, which would make it the fourth, and lowest-luminosity, cyclotron line source to exhibit this relationship
346 - Felix Fuerst 2013
We present NuSTAR observations of Vela X-1, a persistent, yet highly variable, neutron star high-mass X-ray binary (HMXB). Two observations were taken at similar orbital phases but separated by nearly a year. They show very different 3-79 keV flux levels as well as strong variability during each observation, covering almost one order of magnitude in flux. These observations allow, for the first time ever, investigations on kilo-second time-scales of how the centroid energies of cyclotron resonant scattering features (CRSFs) depend on flux for a persistent HMXB. We find that the line energy of the harmonic CRSF is correlated with flux, as expected in the sub-critical accretion regime. We argue that Vela X-1 has a very narrow accretion column with a radius of around 0.4 km that sustains a Coulomb interaction dominated shock at the observed luminosities of Lx ~ 3x10^36 erg/s. Besides the prominent harmonic line at 55 keV the fundamental line around 25 keV is clearly detected. We find that the strengths of the two CRSFs are anti-correlated, which we explain by photon spawning. This anti-correlation is a possible explanation for the debate about the existence of the fundamental line. The ratio of the line energies is variable with time and deviates significantly from 2.0, also a possible consequence of photon spawning, which changes the shape of the line. During the second observation, Vela X-1 showed a short off-state in which the power-law softened and a cut-off was no longer measurable. It is likely that the source switched to a different accretion regime at these low mass accretion rates, explaining the drastic change in spectral shape.
The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $dot{P}_{rm orb}$ of 1.51(7)$times 10^{-10}$ s s$^{-1}$. The very large value of $dot{P}_{rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimated the number of orbital cycles and the delays of our eclipse arrival times spanning 40 yr using as reference time the eclipse arrival time obtained from the Rossi-XTE observation taken in 1996. Fitting the delays with a quadratic model, we found an orbital period $P_{rm orb}=5.57062957(20)$ hr and a $dot{P}_{rm orb}$ value of $1.475(54) times 10^{-10}$ s s$^{-1}$. The addition of a cubic term to the model does not significantly improve the quality of the fit. We also determined a spin-period value of $P_{rm spin}=0.5915669(4)$ s and its first derivative $dot{P}_{rm spin}= -2.595(11) times 10^{-12}$ s s$^{-1}$. The obtained results confirm the scenario of a super-Eddington mass transfer rate; we also exclude a gravitational coupling between the orbit and the change in the oblateness of the companion star triggered by the nuclear luminosity of the companion star.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا