Multiwavelength study of the G345.5+1.5 region


Abstract in English

Star-forming regions are usually studied in the context of Galactic surveys, but dedicated observations are sometimes needed when the study reaches beyond the survey area. Here, we studied the G345.5+1.5 region, which is located slightly above the Galactic plane, to understand its star formation properties. We combined the LABOCA and $^{12}$CO(4$-$3) transition line observations complemented with the Hi-GAL and $it{Spitzer}$-GLIMPSE surveys to study the star formation toward this region. We used the Clumpfind algorithm to extract the clumps from the 870$mu$m and $^{12}$CO(4$-$3) data. Radio emission at 36cm was used to estimate the number of HII regions and to remove the contamination from the free-free emission at 870$mu$m. We employed color-color diagrams and spectral energy distribution slopes to distinguish between prestellar and protostellar clumps. We studied the boundedness of the clumps through the virial parameter. Finally, we estimated the star formation efficiency and star formation rate of the region and used the Schmidt-Kennicutt diagram to compare its ability to form stars. Of the 13 radio sources that we found using the MGPS-2 catalog, 7 are found to be associated with HII regions corresponding to late-B or early-O stars. We found 45 870$mu$m clumps, and 107 $^{12}$CO clumps. More than 50% of the clumps are protostellar and bounded and are able to host star formation. High SFR and SFR density values are associated with the region, with an SFE of a few percent. With submillimeter, CO transition, and short-wavelength infrared observations, our study reveals a population of massive stars, protostellar and bound starless clumps, toward G345.5+1.5. This region is therefore actively forming stars, and its location in the starburst quadrant of the Schmidt-Kennicutt diagram is comparable to other star-forming regions found within the Galactic plane.

Download