Do you want to publish a course? Click here

Diagnosing Potts criticality and two-stage melting in one-dimensional hard-boson models

208   0   0.0 ( 0 )
 Added by Adriano Angelone
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate a model of hard-core bosons with infinitely repulsive nearest- and next-nearest-neighbor interactions in one dimension, introduced by Fendley, Sengupta and Sachdev in Phys. Rev. B 69, 075106 (2004). Using a combination of exact diagonalization, tensor network, and quantum Monte Carlo simulations, we show how an intermediate incommensurate phase separates a crystalline and a disordered phase. We base our analysis on a variety of diagnostics, including entanglement measures, fidelity susceptibility, correlation functions, and spectral properties. According to theoretical expectations, the disordered-to-incommensurate-phase transition point is compatible with Berezinskii-Kosterlitz-Thouless universal behaviour. The second transition is instead non-relativistic, with dynamical critical exponent $z > 1$. For the sake of comparison, we illustrate how some of the techniques applied here work at the Potts critical point present in the phase diagram of the model for finite next-nearest-neighbor repulsion. This latter application also allows to quantitatively estimate which system sizes are needed to match the conformal field theory spectra with experiments performing level spectroscopy.



rate research

Read More

We outline a procedure for using matrix mechanics to compute energy eigenvalues and eigenstates for two and three interacting particles in a confining trap, in one dimension. Such calculations can bridge a gap in the undergraduate physics curriculum between single-particle and many-particle quantum systems, and can also provide a pathway from standard quantum mechanics course material to understanding current research on cold-atom systems. In particular we illustrate the notion of fermionization and how it occurs not only for the ground state in the presence of strong repulsive interactions, but also for excited states, in both the strongly attractive and strongly repulsive regimes.
99 - Yajiang Hao , Yafei Song 2016
We investigate the strongly interacting hard-core anyon gases in a one dimensional harmonic potential at finite temperature by extending thermal Bose-Fermi mapping method to thermal anyon-ferimon mapping method. With thermal anyon-fermion mapping method we obtain the reduced one-body density matrix and therefore the momentum distribution for different statistical parameters and temperatures. At low temperature hard-core anyon gases exhibit the similar properties as those of ground state, which interpolate between Bose-like and Fermi-like continuously with the evolution of statistical properties. At high temperature hard-core anyon gases of different statistical properties display the same reduced one-body density matrix and momentum distribution as those of spin-polarized fermions. The Tans contact of hard-core anyon gas at finite temperature is also evaluated, which take the simple relation with that of Tonks-Girardeau gas $C_b$ as $C=frac12(1-coschipi)C_b$.
We study the ground state of a one-dimensional (1D) trapped Bose gas with two mobile impurity particles. To investigate this set-up, we develop a variational procedure in which the coordinates of the impurity particles are slow-like variables. We validate our method using the exact results obtained for small systems. Then, we discuss energies and pair densities for systems that contain of the order of one hundred atoms. We show that bosonic non-interacting impurities cluster. To explain this clustering, we calculate and discuss induced impurity-impurity potentials in a harmonic trap. Further, we compute the force between static impurities in a ring ({it {`a} la} the Casimir force), and contrast the two effective potentials: the one obtained from the mean-field approximation, and the one due to the one-phonon exchange. Our formalism and findings are important for understanding (beyond the polaron model) the physics of modern 1D cold-atom systems with more than one impurity.
We solve the three-boson problem with contact two- and three-body interactions in one dimension and analytically calculate the ground and excited trimer-state energies. Then, by using the diffusion Monte Carlo technique we calculate the binding energy of three dimers formed in a one-dimensional Bose-Bose or Fermi-Bose mixture with attractive interspecies and repulsive intraspecies interactions. Combining these results with our three-body analytics we extract the three-dimer scattering length close to the dimer-dimer zero crossing. In both considered cases the three-dimer interaction turns out to be repulsive. Our results constitute a concrete proposal for obtaining a one-dimensional gas with a pure three-body repulsion.
101 - Tianhao Ren , Igor Aleiner 2016
We investigate the possible existence of the bound state in the system of three bosons interacting with each other via zero-radius potentials in two dimensions (it can be atoms confined in two dimensions or tri-exciton states in heterostructures or dihalogenated materials). The bosons are classified in two species (a,b) such that a-a and b-b pairs repel each other and a-b attract each other, forming the two-particle bound state with binding energy $epsilon_b^{(2)}$ (such as bi-exciton). We developed an efficient routine based on the proper choice of basis for analytic and numerical calculations. For zero-angular momentum we found the energies of the three-particle bound states $epsilon^{(3)}_b$ for wide ranges of the scattering lengths, and found a universal curve of $epsilon^{(3)}_b/epsilon^{(2)}_b$ which depends only on the scattering lengths but not the microscopic details of the interactions, this is in contrast to the three-dimensional Efimov effect, where a non-universal three-body parameter is needed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا