Do you want to publish a course? Click here

Modeling of the interaction of rigid wheels with dry granular media

83   0   0.0 ( 0 )
 Added by Shashank Agarwal
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the capabilities of various recently developed techniques, namely Resistive Force Theory (RFT) and continuum plasticity implemented with the Material Point Method (MPM), in capturing dynamics of wheel--dry granular media interactions. We compare results to more conventionally accepted methods of modeling wheel locomotion. While RFT is an empirical force model for arbitrarily-shaped bodies moving through granular media, MPM-based continuum modeling allows the simulation of full granular flow and stress fields. RFT allows for rapid evaluation of interaction forces on arbitrary shaped intruders based on a local surface stress formulation depending on depth, orientation, and movement of surface elements. We perform forced-slip experiments for three different wheel types and three different granular materials, and results are compared with RFT, continuum modeling, and a traditional terramechanics semi-empirical method. Results show that for the range of inputs considered, RFT can be reliably used to predict rigid wheel granular media interactions with accuracy exceeding that of traditional terramechanics methodology in several circumstances. Results also indicate that plasticity-based continuum modeling provides an accurate tool for wheel-soil interaction while providing more information to study the physical processes giving rise to resistive stresses in granular media.



rate research

Read More

Using high-speed photography, we investigate two distinct regimes of the impact dynamics of granular jets with non-circular cross-sections. In the steady-state regime, we observe the formation of thin granular sheets with anisotropic shapes and show that the degree of anisotropy increases with the aspect ratio of the jets cross-section. Our results illustrate the liquid-like behavior of granular materials during impact and demonstrate that a collective hydrodynamic flow emerges from strongly interacting discrete particles. We discuss the analogy between our experiments and those from the Relativistic Heavy Ion Collider (RHIC), where similar anisotropic ejecta from a quark-gluon plasma have been observed in heavy-ion impact.
The interplay between Coulomb friction and random excitations is studied experimentally by means of a rotating probe in contact with a stationary granular gas. The granular material is independently fluidized by a vertical shaker, acting as a heat bath for the Brownian-like motion of the probe. Two ball bearings supporting the probe exert nonlinear Coulomb friction upon it. The experimental velocity distribution of the probe, autocorrelation function, and power spectra are compared with the predictions of a linear Boltzmann equation with friction, which is known to simplify in two opposite limits: at high collision frequency, it is mapped to a Fokker-Planck equation with nonlinear friction, whereas at low collision frequency, it is described by a sequence of independent random kicks followed by friction-induced relaxations. Comparison between theory and experiment in these two limits shows good agreement. Deviations are observed at very small velocities, where the real bearings are not well modeled by Coulomb friction.
205 - Iker Zuriguel 2014
During the past decades, notable improvements have been achieved in the understanding of static and dynamic properties of granular materials, giving rise to appealing new concepts like jamming, force chains, non-local rheology or the inertial number. The `saltcellar can be seen as a canonical example of the characteristic features displayed by granular materials: an apparently smooth flow is interrupted by the formation of a mesoscopic structure (arch) above the outlet that causes a quick dissipation of all the kinetic energy within the system. In this manuscript, I will give an overview of this field paying special attention to the features of statistical distributions appearing in the clogging and unclogging processes. These distributions are essential to understand the problem and allow subsequent study of topics such as the influence of particle shape, the structure of the clogging arches and the possible existence of a critical outlet size above which the outpouring will never stop. I shall finally offer some hints about general ideas that can be explored in the next few years.
We measure the drag encountered by a vertically oriented rod moving across a sedimented granular bed immersed in a fluid under steady-state conditions. At low rod speeds, the presence of the fluid leads to a lower drag because of buoyancy, whereas a significantly higher drag is observed with increasing speeds. The drag as a function of depth is observed to decrease from being quadratic at low speeds to appearing more linear at higher speeds. By scaling the drag with the average weight of the grains acting on the rod, we obtain the effective friction $mu_e$ encountered over six orders of magnitude of speeds. While a constant $mu_e$ is found when the grain size, rod depth and fluid viscosity are varied at low speeds, a systematic increase is observed as the speed is increased. We analyze $mu_e$ in terms of the inertial number $I$ and viscous number $J$ to understand the relative importance of inertia and viscous forces, respectively. For sufficiently large fluid viscosities, we find that the effect of varying the speed, depth, and viscosity can be described by the empirical function $mu_e = mu_o + k J^n$, where $mu_o$ is the effective friction measured in the quasi-static limit, and $k$ and $n$ are material constants. The drag is then analyzed in terms of the effective viscosity $eta_e$ and found to decrease systematically as a function of $J$. We further show that $eta_e$ as a function of $J$ is directly proportional to the fluid viscosity and the $mu_e$ encountered by the rod.
Granular fronts are a common yet unexplained phenomenon emerging during the gravity driven free-surface flow of concentrated suspensions. They are usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a visco-plastic fluid obtained from a kaolin-water dispersion, with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, like fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to segregate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the material properties and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a Lattice-Boltzmann Method, and the particles are explicitly represented using the Discrete Element Method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time-scale of particle settling with the one of particle recirculation, a non-dimensional number is defined, and is found to be effective in predicting the formation of a granular front.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا