Do you want to publish a course? Click here

Optimal control for multiscale equations with rough coefficients

53   0   0.0 ( 0 )
 Added by Lei Zhang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

This paper concerns the convex optimal control problem governed by multiscale elliptic equations with arbitrarily rough $L^infty$ coefficients, which has important applications in composite materials and geophysics. We use one of the recently developed numerical homogenization techniques, the so-called Rough Polyharmonic Splines (RPS) and its generalization (GRPS) for the efficient resolution of the elliptic operator on the coarse scale. Those methods have optimal convergence rate which do not rely on the regularity of the coefficients nor the concepts of scale-separation or ergodicity. As the iterative solution of the OCP-OPT formulation of the optimal control problem requires solving the corresponding (state and co-state) multiscale elliptic equations many times with different right hand sides, numerical homgogenization approach only requires one-time pre-computation on the fine scale and the following iterations can be done with computational cost proportional to coarse degrees of freedom. Numerical experiments are presented to validate the theoretical analysis.



rate research

Read More

In this paper, we demonstrate the construction of generalized Rough Polyhamronic Splines (GRPS) within the Bayesian framework, in particular, for multiscale PDEs with rough coefficients. The optimal coarse basis can be derived automatically by the randomization of the original PDEs with a proper prior distribution and the conditional expectation given partial information on edge or derivative measurements. We prove the (quasi)-optimal localization and approximation properties of the obtained bases, and justify the theoretical results with numerical experiments.
We propose a generalized multiscale finite element method (GMsFEM) based on clustering algorithm to study the elliptic PDEs with random coefficients in the multi-query setting. Our method consists of offline and online stages. In the offline stage, we construct a small number of reduced basis functions within each coarse grid block, which can then be used to approximate the multiscale finite element basis functions. In addition, we coarsen the corresponding random space through a clustering algorithm. In the online stage, we can obtain the multiscale finite element basis very efficiently on a coarse grid by using the pre-computed multiscale basis. The new GMsFEM can be applied to multiscale SPDE starting with a relatively coarse grid, without requiring the coarsest grid to resolve the smallest-scale of the solution. The new method offers considerable savings in solving multiscale SPDEs. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed method for several multiscale stochastic problems without scale separation.
In this paper, we study a multiscale method for simulating a dual-continuum unsaturated flow problem within complex heterogeneous fractured porous media. Mathematically, each of the dual continua is modeled by a multiscale Richards equation (for pressure head), and these equations are coupled to one another by transfer terms. On its own, Richards equation is already a nonlinear partial differential equation, and it is exceedingly difficult to solve numerically due to the extra nonlinear dependencies involving the soil water. To deal with multiple scales, our strategy is that starting from a microscopic scale, we upscale the coupled system of dual-continuum Richards equations via homogenization by the two-scale asymptotic expansion, to obtain a homogenized system, at an intermediate scale (level). Based on a hierarchical approach, the homogenizations effective coefficients are computed through solving the arising cell problems. To tackle the nonlinearity, after time discretization, we use Picard iteration procedure for linearization of the homogenized Richards equations. At each Picard iteration, some degree of multiscale still remains from the intermediate level, so we utilize the generalized multiscale finite element method (GMsFEM) combining with a multi-continuum approach, to upscale the homogenized system to a macroscopic (coarse-grid) level. This scheme involves building uncoupled and coupled multiscale basis functions, which are used not only to construct coarse-grid solution approximation with high accuracy but also (with the coupled multiscale basis) to capture the interactions among continua. These prospects and convergence are demonstrated by several numerical results for the proposed method.
This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{rm div}(a abla u)=f$ where $a=exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polynomial expansion in the scalar Gaussian random variables that parametrize $b$. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in cite{BCDM} for best $n$-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with $b$ as the Brownian bridge confirm our theoretical findings.
This work is concerned with the optimal control problems governed by a 1D wave equation with variable coefficients and the control spaces $mathcal M_T$ of either measure-valued functions $L_{w^*}^2(I,mathcal M(Omega))$ or vector measures $mathcal M(Omega,L^2(I))$. The cost functional involves the standard quadratic tracking terms and the regularization term $alpha|u|_{mathcal M_T}$ with $alpha>0$. We construct and study three-level in time bilinear finite element discretizations for this class of problems. The main focus lies on the derivation of error estimates for the optimal state variable and the error measured in the cost functional. The analysis is mainly based on some previous results of the authors. The numerical results are included.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا