Do you want to publish a course? Click here

Effective pairing interaction in a system with an incipient band

370   0   0.0 ( 0 )
 Added by Thomas Maier
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature and mechanism of superconductivity in the extremely electron-doped FeSe based superconductors continues to be a matter of debate. In these systems, the hole-like band has moved below the Fermi energy, and various spin-fluctuation theories involving pairing between states near the electron Fermi surface and states of this incipient band have been proposed. Here, using a dynamic cluster quantum Monte Carlo calculation for a bilayer Hubbard model we show that the pairing in these systems can be understood in terms of an effective retarded attractive interaction between electrons near the electron Fermi surface.



rate research

Read More

The nature of the effective interaction responsible for pairing in the high-temperature superconducting cuprates remains unsettled. This question has been studied extensively using the simplified single-band Hubbard model, which does not explicitly consider the orbital degrees of freedom of the relevant CuO$_2$ planes. Here, we use a dynamic cluster quantum Monte Carlo approximation to study the orbital structure of the pairing interaction in the three-band Hubbard model, which treats the orbital degrees of freedom explicitly. We find that the interaction predominately acts between neighboring copper orbitals, but with significant additional weight appearing on the surrounding bonding molecular oxygen orbitals. By explicitly comparing these results to those from the simpler single-band Hubbard model, our study provides strong support for the single-band framework for describing superconductivity in the cuprates.
We study the spin-fluctuation-mediated $spm$-wave superconductivity in the bilayer Hubbard model with vertical and diagonal interlayer hoppings. As in the two-leg ladder model with diagonal hoppings, studied previously by the present authors, superconductivity is strongly enhanced when one of the bands lies just below (or touches) the Fermi level, that is, when the band is incipient. The strong enhancement of superconductivity is because large weight of the spin fluctuations lies in an appropriate energy range, whereas the low energy, pair-breaking spin fluctuations are suppressed. The optimized eigenvalue of the linearized Eliashberg equation, a measure for the strength of superconductivity, is not strongly affected by the bare width of the incipient band, but the parameter regime where superconductivity is optimized is wide when the incipient band is narrow, and in this sense, the coexistence of narrow and wide bands is favorable for superconductivity.
259 - Junren Shi 2008
We establish the general form of effective interacting Hamiltonian for LaOFeAs system based on the symmetry consideration. The peculiar symmetry property of the electron states yields unusual form of electron-electron interaction. Based on the general effective Hamiltonian, we determine all the ten possible pairing states. More physical considerations would further reduce the list of the candidates for the pairing state.
Theories based on the coupling between spin fluctuations and fermionic quasiparticles are among the leading contenders to explain the origin of high-temperature superconductivity, but estimates of the strength of this interaction differ widely. Here we analyze the charge- and spin-excitation spectra determined by angle-resolved photoemission and inelastic neutron scattering, respectively, on the same crystals of the high-temperature superconductor YBa2Cu3O6.6. We show that a self-consistent description of both spectra can be obtained by adjusting a single parameter, the spin-fermion coupling constant. In particular, we find a quantitative link between two spectral features that have been established as universal for the cuprates, namely high-energy spin excitations and kinks in the fermionic band dispersions along the nodal direction. The superconducting transition temperature computed with this coupling constant exceeds 150 K, demonstrating that spin fluctuations have sufficient strength to mediate high-temperature superconductivity.
We study the three-band Hubbard model for the copper oxide plane of the high-temperature superconducting cuprates using determinant quantum Monte Carlo and the dynamical cluster approximation (DCA) and provide a comprehensive view of the pairing correlations in this model using these methods. Specifically, we compute the pair-field susceptibility and study its dependence on temperature, doping, interaction strength, and charge-transfer energy. Using the DCA, we also solve the Bethe-Salpeter equation for the two-particle Greens function in the particle-particle channel to determine the transition temperature to the superconducting phase on smaller clusters. Our calculations reproduce many aspects of the cuprate phase diagram and indicate that there is an optimal value of the charge-transfer energy for the model where $T_c$ is largest. These results have implications for our understanding of superconductivity in both the cuprates and other doped charge-transfer insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا