Optimization of Patterned Surfaces for Improved Superhydrophobicity Through Cost-Effective Large-Scale Computations


Abstract in English

The growing need for creating surfaces with specific wetting properties, such as superhyrdophobic behavior, asks for novel methods for their efficient design. In this work, a fast computational method for the evaluation of patterned superhyrdophobic surfaces is introduced. The hydrophobicity of a surface is quantified in energy terms through an objective function. The increased computational cost led to the parallelization of the method with the Message Passing Interface (MPI) communication protocol that enables calculations on distributed memory systems allowing for parametric investigations at acceptable time frames. The method is demonstrated for a surface consisting of an array of pillars with inverted conical (frustum) geometry. The parallel speedup achieved allows for low cost parametric investigations on the effect of the fine features (curvature and slopes) of the pillars on the superhydophobicity of the surface and consequently for the optimization of superhyrdophobic surfaces.

Download