Do you want to publish a course? Click here

Nanophotonic soliton-based microwave synthesizers

377   0   0.0 ( 0 )
 Added by Junqiu Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microwave photonic technologies, which upshift the carrier into the optical domain to facilitate the generation and processing of ultrawide-band electronic signals at vastly reduced fractional bandwidths, have the potential to achieve superior performance compared to conventional electronics for targeted functions. For microwave photonic applications such as filters, coherent radars, subnoise detection, optical communications and low-noise microwave generation, frequency combs are key building blocks. By virtue of soliton microcombs, frequency combs can now be built using CMOS compatible photonic integrated circuits, operated with low power and noise, and have already been employed in system-level demonstrations. Yet, currently developed photonic integrated microcombs all operate with repetition rates significantly beyond those that conventional electronics can detect and process, compounding their use in microwave photonics. Here we demonstrate integrated soliton microcombs operating in two widely employed microwave bands, X- and K-band. These devices can produce more than 300 comb lines within the 3-dB-bandwidth, and generate microwave signals featuring phase noise levels below 105 dBc/Hz (140 dBc/Hz) at 10 kHz (1 MHz) offset frequency, comparable to modern electronic microwave synthesizers. In addition, the soliton pulse stream can be injection-locked to a microwave signal, enabling actuator-free repetition rate stabilization, tuning and microwave spectral purification, at power levels compatible with silicon-based lasers (<150 mW). Our results establish photonic integrated soliton microcombs as viable integrated low-noise microwave synthesizers. Further, the low repetition rates are critical for future dense WDM channel generation schemes, and can significantly reduce the system complexity of photonic integrated frequency synthesizers and atomic clocks.



rate research

Read More

73 - Jianqi Hu , Jijun He , Junqiu Liu 2020
The rapidly maturing integrated Kerr microcombs show significant potential for microwave photonics. Yet, state-of-the-art microcomb based radiofrequency (RF) filters have required programmable pulse shapers, which inevitably increase the system cost, footprint, and complexity. Here, by leveraging the smooth spectral envelope of single solitons, we demonstrate for the first time microcomb based RF filters free from any additional pulse shaping. More importantly, we achieve all-optical reconfiguration of the RF filters by exploiting the intrinsically rich soliton configurations. Specifically, we harness the perfect soliton crystals to multiply the comb spacing thereby dividing the filter passband frequencies. Also, a completely novel approach based on the versatile interference patterns of two solitons within one round-trip, enables wide reconfigurability of RF passband frequencies according to their relative azimuthal angles. The proposed schemes demand neither an interferometric setup nor another pulse shaper for filter reconfiguration, providing a practical route towards chip-scale, widely reconfigurable microcomb based RF filters.
Nanophotonic entangled-photon sources are a critical building block of chip-scale quantum photonic architecture and have seen significant development over the past two decades. These sources generate photon pairs that typically span over a narrow frequency bandwidth. Generating entanglement over a wide spectral region has proven to be useful in a wide variety of applications including quantum metrology, spectroscopy and sensing, and optical communication. However, generation of broadband photon pairs with temporal coherence approaching an optical cycle on a chip is yet to be seen. Here we demonstrate generation of ultra-broadband entangled photons using spontaneous parametric down-conversion in a periodically-poled lithium niobate nanophotonic waveguide. We employ dispersion engineering to achieve a bandwidth of 100 THz (1.2 - 2 $mu$m), at a high efficiency of 13 GHz/mW. The photons show strong temporal correlations and purity with the coincidence-to-accidental ratio exceeding $10^5$ and $>$ 98% two-photon interference visibility. These properties together with the piezo-electric and electro-optic control and reconfigurability, make thin-film lithium niobate an excellent platform for a controllable entanglement source for quantum communication and computing, and open a path towards femtosecond metrology and spectroscopy with non-classical light on a nanophotonic chip.
Advances in integrated photonics open exciting opportunities for batch-fabricated optical sensors using high quality factor nanophotonic cavities to achieve ultra-high sensitivities and bandwidths. The sensitivity improves with higher optical power, however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic-force-microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, reaching a sensitivity of $approx$ 0.4 fm/Hz$^{1/2}$, an improvement of $approx 10times$ relative to the best performance in the linear regime. Counterintuitively, we discover that higher transduction gain and sensitivity are obtained with lower quality factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing small-signal dynamic response of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
The development of inverse design, where computational optimization techniques are used to design devices based on certain specifications, has led to the discovery of many compact, non-intuitive structures with superior performance. Among various methods, large-scale, gradient-based optimization techniques have been one of the most important ways to design a structure containing a vast number of degrees of freedom. These techniques are made possible by the adjoint method, in which the gradient of an objective function with respect to all design degrees of freedom can be computed using only two full-field simulations. However, this approach has so far mostly been applied to linear photonic devices. Here, we present an extension of this method to modeling nonlinear devices in the frequency domain, with the nonlinear response directly included in the gradient computation. As illustrations, we use the method to devise compact photonic switches in a Kerr nonlinear material, in which low-power and high-power pulses are routed in different directions. Our technique may lead to the development of novel compact nonlinear photonic devices.
Monolayer transition metal dichalcogenides with direct bandgaps are emerging candidates for microelectronics, nano-photonics, and optoelectronics. Transferred onto photonic integrated circuits (PICs), these semiconductor materials have enabled new classes of light-emitting diodes, modulators and photodetectors, that could be amenable to wafer-scale manufacturing. For integrated photonic devices, the optical losses of the PICs are critical. In contrast to silicon, silicon nitride (Si3N4) has emerged as a low-loss integrated platform with a wide transparency window from ultraviolet to mid-infrared and absence of two-photon absorption at telecommunication bands. Moreover, it is suitable for nonlinear integrated photonics due to its high Kerr nonlinearity and high-power handing capability. These features of Si3N4 are intrinsically beneficial for nanophotonics and optoelectronics applications. Here we report a low-loss integrated platform incorporating monolayer molybdenum ditelluride (1L-MoTe2) with Si3N4 photonic microresonators. We show that, with the 1L-MoTe2, microresonator quality factors exceeding 3 million in the telecommunication O-band to E-band are maintained. We further investigate the change of microresonator dispersion and resonance shift due to the presence of 1L-MoTe2, and extrapolate the optical loss introduced by 1L-MoTe2 in the telecommunication bands, out of the excitonic transition region. Our work presents a key step for low-loss, hybrid PICs with layered semiconductors without using heterogeneous wafer bonding.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا