Do you want to publish a course? Click here

Colloidal Brazil nut effect in microswimmer mixtures induced by motility contrast

225   0   0.0 ( 0 )
 Added by Celia Lozano
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically and experimentally study the segregation dynamics in a binary mixture of microswimmers which move on a two-dimensional substrate in a static periodic triangular-like light intensity field. The motility of the active particles is proportional to the imposed light intensity and they possess a motility contrast, i.e., the prefactor depends on the species. In addition, the active particles also experience a torque aligning their motion towards the direction of the negative intensity gradient. We find a segregation of active particles near the intensity minima where typically one species is localized close to the minimum and the other one is centered around in an outer shell. For a very strong aligning torque, there is an exact mapping onto an equilibrium system in an effective external potential that is minimal at the intensity minima. This external potential is similar to (height-dependent) gravity, such that one can define effective `heaviness of the self-propelled particles. In analogy to shaken granular matter in gravity, we define a `colloidal Brazil nut effect if the heavier particles are floating on top of the lighter ones. Using extensive Brownian dynamics simulations, we identify system parameters for the active colloidal Brazil nut effect to occur and explain it based on a generalized Archimedes principle within the effective equilibrium model: heavy particles are levitated in a dense fluid of lighter particles if their effective mass density is lower than that of the surrounding fluid. We also perform real-space experiments on light-activated self-propelled colloidal mixtures which confirm the theoretical predictions.



rate research

Read More

The Brazil-nut effect is the phenomenon in which a large intruder particle immersed in a vertically shaken bed of smaller particles rises to the top, even when it is much denser. The usual practice, while describing these experiments, has been to use the dimensionless acceleration Gamma=a omega^2/g, where a and omega are respectively the amplitude and the angular frequency of vibration and g is the acceleration due to gravity. Considering a vibrated quasi-two-dimensional bed of mustard seeds, we show here that the peak-to-peak velocity of shaking v= aomega, rather than Gamma, is the relevant parameter in the regime where boundary-driven granular convection is the main driving mechanism. We find that the rise-time tau of an intruder is described by the scaling law tau ~ (v-v_c)^{-alpha}, where v_c is identified as the critical vibration velocity for the onset of convective motion of the mustard seeds. This scaling form holds over a wide range of (a,omega), diameter and density of the intruder.
270 - Vicente Garzo 2008
A new segregation criterion based on the inelastic Enskog kinetic equation is derived to show the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the different parameters of the system. In contrast to previous theoretical attempts the approach is not limited to the near-elastic case, takes into account the influence of both thermal gradients and gravity and applies for moderate densities. The form of the phase-diagrams for the BNE/RBNE transition depends sensitively on the value of gravity relative to the thermal gradient, so that it is possible to switch between both states for given values of the mass and size ratios, the coefficients of restitution and the solid volume fraction. In particular, the influence of collisional dissipation on segregation becomes more important when the thermal gradient dominates over gravity than in the opposite limit. The present analysis extends previous results derived in the dilute limit case and is consistent with the findings of some recent experimental results.
Gravity can affect colloidal suspensions since for micrometer-sized particles gravitational and thermal energies can be comparable over vertical length scales of a few millimeters. In mixtures, each species possesses a different buoyant mass, which can make experimental results counter-intuitive and difficult to interpret. Here, we revisit from a theoretical perspective iconic sedimentation-diffusion-equilibrium experiments on colloidal plate-rod mixtures by van der Kooij and Lekkerkerker. We reproduce their findings, including the observation of five different mesophases in a single cuvette. Using sedimentation path theory, we incorporate gravity into a microscopic theory for the bulk of a plate-rod mixture. We also show how to disentangle the effects of gravity from sedimentation experiments to obtain the bulk behavior and make predictions that can be experimentally tested. These include changes in the sequence by altering the sample height. We demonstrate that both buoyant mass ratio and sample height form control parameters to study bulk phase behavior.
In nature, objects which are in thermal contact with each other, usually approach the same temperature, unless a heat source (or sink) cherishes a persistent flow of heat. Accordingly, in a well-isolated apartment flat, most items are at a similar temperature. This is a general consequence of equilibrium thermodynamics, requiring coexisting phases to have identical temperatures. Opposing this generic situation, here we identify a system showing different temperatures in coexisting phases, which are separated from each other by a sharp and persistent temperature gradient. Thermodynamically, such a hot and a cold phase are allowed to coexist, as the system we consider comprises active particles which self-propel relative to their environment and are thus intrinsically out-of-equilibrium. Although these microparticles are well known to spontaneously phase-separate into a liquid- and a gas-like state, different kinetic temperatures in coexisting phases occur if and only if inertia is introduced, which is neglected in standard models describing active particles. Our results, therefore, exemplify a novel route to use active particles to create a self-sustained temperature gradient across coexisting phases, a phenomenon, which is fundamentally beyond equilibrium physics.
We analyze the phonon spectra of periodic structures formed by two-dimensional mixtures of dipolar colloidal particles. These mixtures display an enormous variety of complex ordered configurations [J. Fornleitner {it et al.}, Soft Matter {bf 4}, 480 (2008)], allowing for the systematic investigation of the ensuing phonon spectra and the control of phononic gaps. We show how the shape of the phonon bands and the number and width of the phonon gaps can be controlled by changing the susceptibility ratio, the concentration and the mass ratio between the two components.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا