Do you want to publish a course? Click here

Meson deformation by magnetic fields in lattice QCD

156   0   0.0 ( 0 )
 Added by Arata Yamamoto
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study light meson properties in a magnetic field, focusing on a charged pion and a charged and polarized rho meson, in quenched lattice QCD. The gauge-invariant density-density correlators are calculated to investigate the deformation caused by the magnetic field. We find that these mesons acquire elongated shapes along the magnetic field. The magnitude of the deformation is about 10-20 % when the strength of the magnetic field is of the order of the squared unphysical pion mass.



rate research

Read More

We summarize our lattice QCD determinations of the pion-pion, pion-kaon and kaon-kaon s-wave scattering lengths at maximal isospin with a particular focus on the extrapolation to the physical point and the usage of next-to-leading order chiral perturbation theory to do so. We employ data at three values of the lattice spacing and pion masses ranging from around 230 MeV to around 450 MeV, applying Lueschers finite volume method to compute the scattering lengths. We find that leading order chiral perturbation theory is surprisingly close to our data even in the kaon-kaon case for our entire range of pion masses.
Chiral perturbation theory makes definitive predictions for the extrinsic behavior of hadrons in external electric and magnetic fields. Near the chiral limit, the electric and magnetic polarizabilities of pions, kaons, and nucleons are determined in terms of a few well-known parameters. In this limit, hadrons become quantum mechanically diffuse as polarizabilities scale with the inverse square-root of the quark mass. In some cases, however, such predictions from chiral perturbation theory have not compared well with experimental data. Ultimately we must turn to first principles numerical simulations of QCD to determine properties of hadrons, and confront the predictions of chiral perturbation theory. To address the electromagnetic polarizabilities, we utilize the background field technique. Restricting our attention to calculations in background electric fields, we demonstrate new techniques to determine electric polarizabilities and baryon magnetic moments for both charged and neutral states. As we can study the quark mass dependence of observables with lattice QCD, the lattice will provide a crucial test of our understanding of low-energy QCD, which will be timely in light of ongoing experiments, such as at COMPASS and HIgamma S.
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the non-perturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the LSJ basis one may extract a partial wave content of a meson. We present results for the ground state of the rho-meson using quenched simulations as well as simulations with two dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple 3S1-wave composition of the rho-meson in the infrared, like in the SU(6) flavor-spin quark model.
We study local CP-violation on the lattice by measuring the local correlation between the topological charge density and the electric dipole moment of quarks, induced by a constant external magnetic field. This correlator is found to increase linearly with the external field, with the coefficient of proportionality depending only weakly on temperature. Results are obtained on lattices with various spacings, and are extrapolated to the continuum limit after the renormalization of the observables is carried out. This renormalization utilizes the gradient flow for the quark and gluon fields. Our findings suggest that the strength of local CP-violation in QCD with physical quark masses is about an order of magnitude smaller than a model prediction based on nearly massless quarks in domains of constant gluon backgrounds with topological charge. We also show numerical evidence that the observed local CP-violation correlates with spatially extended electric dipole structures in the QCD vacuum.
Lattice QCD simulations are now reaching a precision where isospin breaking effects become important. Previously, we have developed a program to systematically investigate the pattern of flavor symmetry beaking within QCD and successfully applied it to meson and baryon masses involving up, down and strange quarks. In this Letter we extend the calculations to QCD + QED and present our first results on isospin splittings in the pseudoscalar meson and baryon octets. In particular, we obtain the nucleon mass difference of $M_n-M_p=1.35(18)(8),mbox{MeV}$ and the electromagnetic contribution to the pion splitting $M_{pi^+}-M_{pi^0}=4.60(20),mbox{MeV}$. Further we report first determination of the separation between strong and electromagnetic contributions in the $bar{MS}$ scheme.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا