No Arabic abstract
When trained on multimodal image datasets, normal Generative Adversarial Networks (GANs) are usually outperformed by class-conditional GANs and ensemble GANs, but conditional GANs is restricted to labeled datasets and ensemble GANs lack efficiency. We propose a novel GAN variant called virtual conditional GAN (vcGAN) which is not only an ensemble GAN with multiple generative paths while adding almost zero network parameters, but also a conditional GAN that can be trained on unlabeled datasets without explicit clustering steps or objectives other than the adversary loss. Inside the vcGANs generator, a learnable ``analog-to-digital converter (ADC) module maps a slice of the inputted multivariate Gaussian noise to discrete/digital noise (virtual label), according to which a selector selects the corresponding generative path to produce the sample. All the generative paths share the same decoder network while in each path the decoder network is fed with a concatenation of a different pre-computed amplified one-hot vector and the inputted Gaussian noise. We conducted a lot of experiments on several balanced/imbalanced image datasets to demonstrate that vcGAN converges faster and achieves improved Frechet Inception Distance (FID). In addition, we show the training byproduct that the ADC in vcGAN learned the categorical probability of each mode and that each generative path generates samples of specific mode, which enables class-conditional sampling. Codes are available at url{https://github.com/annonnymmouss/vcgan}
A conditional Generative Adversarial Network allows for generating samples conditioned on certain external information. Being able to recover latent and conditional vectors from a condi- tional GAN can be potentially valuable in various applications, ranging from image manipulation for entertaining purposes to diagnosis of the neural networks for security purposes. In this work, we show that it is possible to recover both latent and conditional vectors from generated images given the generator of a conditional generative adversarial network. Such a recovery is not trivial due to the often multi-layered non-linearity of deep neural networks. Furthermore, the effect of such recovery applied on real natural images are investigated. We discovered that there exists a gap between the recovery performance on generated and real images, which we believe comes from the difference between generated data distribution and real data distribution. Experiments are conducted to evaluate the recovered conditional vectors and the reconstructed images from these recovered vectors quantitatively and qualitatively, showing promising results.
Several deep learning methods have been proposed for completing partial data from shape acquisition setups, i.e., filling the regions that were missing in the shape. These methods, however, only complete the partial shape with a single output, ignoring the ambiguity when reasoning the missing geometry. Hence, we pose a multi-modal shape completion problem, in which we seek to complete the partial shape with multiple outputs by learning a one-to-many mapping. We develop the first multimodal shape completion method that completes the partial shape via conditional generative modeling, without requiring paired training data. Our approach distills the ambiguity by conditioning the completion on a learned multimodal distribution of possible results. We extensively evaluate the approach on several datasets that contain varying forms of shape incompleteness, and compare among several baseline methods and variants of our methods qualitatively and quantitatively, demonstrating the merit of our method in completing partial shapes with both diversity and quality.
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles $z$ and $c$ in the generation process and provides an encoder that learns inverse mappings from $x$ to both $z$ and $c$, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode $c$ more accurately, and utilize $z$ and $c$ more effectively and in a more disentangled way to generate samples.
Conditional generative adversarial networks (cGAN) have led to large improvements in the task of conditional image generation, which lies at the heart of computer vision. The major focus so far has been on performance improvement, while there has been little effort in making cGAN more robust to noise. The regression (of the generator) might lead to arbitrarily large errors in the output, which makes cGAN unreliable for real-world applications. In this work, we introduce a novel conditional GAN model, called RoCGAN, which leverages structure in the target space of the model to address the issue. Our model augments the generator with an unsupervised pathway, which promotes the outputs of the generator to span the target manifold even in the presence of intense noise. We prove that RoCGAN share similar theoretical properties as GAN and experimentally verify that our model outperforms existing state-of-the-art cGAN architectures by a large margin in a variety of domains including images from natural scenes and faces.
Image generation has raised tremendous attention in both academic and industrial areas, especially for the conditional and target-oriented image generation, such as criminal portrait and fashion design. Although the current studies have achieved preliminary results along this direction, they always focus on class labels as the condition where spatial contents are randomly generated from latent vectors. Edge details are usually blurred since spatial information is difficult to preserve. In light of this, we propose a novel Spatially Constrained Generative Adversarial Network (SCGAN), which decouples the spatial constraints from the latent vector and makes these constraints feasible as additional controllable signals. To enhance the spatial controllability, a generator network is specially designed to take a semantic segmentation, a latent vector and an attribute-level label as inputs step by step. Besides, a segmentor network is constructed to impose spatial constraints on the generator. Experimentally, we provide both visual and quantitative results on CelebA and DeepFashion datasets, and demonstrate that the proposed SCGAN is very effective in controlling the spatial contents as well as generating high-quality images.